Stiffness evaluation of semi-rigid connection using steel clamps in plastic greenhouse structure

IF 4.4 1区 农林科学 Q1 AGRICULTURAL ENGINEERING Biosystems Engineering Pub Date : 2024-12-02 DOI:10.1016/j.biosystemseng.2024.11.018
Sangik Lee , Jong-hyuk Lee , Byung-hun Seo , Dong-su Kim , Dongwoo Kim , Yerim Jo , Won Choi
{"title":"Stiffness evaluation of semi-rigid connection using steel clamps in plastic greenhouse structure","authors":"Sangik Lee ,&nbsp;Jong-hyuk Lee ,&nbsp;Byung-hun Seo ,&nbsp;Dong-su Kim ,&nbsp;Dongwoo Kim ,&nbsp;Yerim Jo ,&nbsp;Won Choi","doi":"10.1016/j.biosystemseng.2024.11.018","DOIUrl":null,"url":null,"abstract":"<div><div>Greenhouse structures, essential for modern agriculture, often experience significant uncertainties due to varying environmental conditions, leading to frequent damage and economic losses. Accurately analysing the structural responses of these greenhouses is particularly challenging due to the difficulty in understanding the actual behaviour of connections using steel clamps. This study focuses on evaluating the stiffness and mechanical behaviour of semi-rigid connections using steel clamps in plastic greenhouses. A specialised load-deformation testing apparatus was developed to assess the relationships between force and displacement or moment and rotation for these connections with various deformation modes. The experimental results were used to model stiffness coefficients and ultimate limit loads, providing a detailed understanding of the mechanical properties of these connections. Findings reveal that steel clamps introduce complex structural behaviours that differ significantly from traditional connections, highlighting the need for advanced modelling techniques. This comprehensive analysis offers new insights into the behaviour of semi-rigid connections in greenhouse structures and underscores the importance of detailed empirical studies. The research contributes to improving the structural design and safety assessments of agricultural facilities, ensuring better resilience against environmental stresses. The outcomes are crucial for developing more effective and reliable greenhouse designs that can withstand adverse conditions, ultimately supporting sustainable agricultural practices.</div></div>","PeriodicalId":9173,"journal":{"name":"Biosystems Engineering","volume":"250 ","pages":"Pages 15-27"},"PeriodicalIF":4.4000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosystems Engineering","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1537511024002599","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Greenhouse structures, essential for modern agriculture, often experience significant uncertainties due to varying environmental conditions, leading to frequent damage and economic losses. Accurately analysing the structural responses of these greenhouses is particularly challenging due to the difficulty in understanding the actual behaviour of connections using steel clamps. This study focuses on evaluating the stiffness and mechanical behaviour of semi-rigid connections using steel clamps in plastic greenhouses. A specialised load-deformation testing apparatus was developed to assess the relationships between force and displacement or moment and rotation for these connections with various deformation modes. The experimental results were used to model stiffness coefficients and ultimate limit loads, providing a detailed understanding of the mechanical properties of these connections. Findings reveal that steel clamps introduce complex structural behaviours that differ significantly from traditional connections, highlighting the need for advanced modelling techniques. This comprehensive analysis offers new insights into the behaviour of semi-rigid connections in greenhouse structures and underscores the importance of detailed empirical studies. The research contributes to improving the structural design and safety assessments of agricultural facilities, ensuring better resilience against environmental stresses. The outcomes are crucial for developing more effective and reliable greenhouse designs that can withstand adverse conditions, ultimately supporting sustainable agricultural practices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biosystems Engineering
Biosystems Engineering 农林科学-农业工程
CiteScore
10.60
自引率
7.80%
发文量
239
审稿时长
53 days
期刊介绍: Biosystems Engineering publishes research in engineering and the physical sciences that represent advances in understanding or modelling of the performance of biological systems for sustainable developments in land use and the environment, agriculture and amenity, bioproduction processes and the food chain. The subject matter of the journal reflects the wide range and interdisciplinary nature of research in engineering for biological systems.
期刊最新文献
Egg characteristics assessment as an enabler for in-ovo sexing technology: A review Analysis of three-dimensional cake thickness structure characteristics in a screen filter for drip irrigation based on the CFD‒DEM coupling method Stiffness evaluation of semi-rigid connection using steel clamps in plastic greenhouse structure Vacuum suction end-effector development for robotic harvesters of fresh market apples Optimisation design and experimental analysis of rotary blade reinforcing ribs using DEM-FEM techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1