Polydopamine-integrated cellulose/graphene oxide monoliths: A versatile platform for efficient continuous-flow iodine capture and photothermal-enhanced reduction of Cr(VI)

IF 10.7 1区 化学 Q1 CHEMISTRY, APPLIED Carbohydrate Polymers Pub Date : 2024-11-30 DOI:10.1016/j.carbpol.2024.123090
Astrini Pradyasti , Myeong Joo Lee , Haiji Huang , Won Mook Choi , Mun Ho Kim
{"title":"Polydopamine-integrated cellulose/graphene oxide monoliths: A versatile platform for efficient continuous-flow iodine capture and photothermal-enhanced reduction of Cr(VI)","authors":"Astrini Pradyasti ,&nbsp;Myeong Joo Lee ,&nbsp;Haiji Huang ,&nbsp;Won Mook Choi ,&nbsp;Mun Ho Kim","doi":"10.1016/j.carbpol.2024.123090","DOIUrl":null,"url":null,"abstract":"<div><div>The global challenge of wastewater contamination, especially from persistent pollutants like radioactive isotopes and heavy metals, demands innovative purification solutions. Radioactive iodine isotopes (<sup>131</sup>I and <sup>129</sup>I), stemming from nuclear activities, pose serious health risks due to their mobility, bioaccumulation, and ionizing radiation, particularly impacting thyroid health. Similarly, hexavalent chromium, Cr(VI), is highly toxic and persistent in water, linked to cancer and other severe health issues. Developing effective technologies for iodine capture and Cr(VI) reduction is therefore critical for public health and environmental protection. This study presents two distinct cellulose-based composite materials tailored for environmental remediation: cellulose/graphene oxide/polydopamine (cellulose/GO/PDA) monoliths for iodine capture and cellulose/graphene oxide/polydopamine/palladium nano-crystals (cellulose/GO/PDA/Pd) monoliths for the reduction of Cr(VI). PDA substantially enhances the adsorptive, catalytic and photothermal properties of monoliths. The monoliths demonstrated exceptional performance in both batch and continuous-flow reactor studies. Complete iodine removal was achieved within 15 s, while Cr(VI) was entirely reduced within 9 min under dark conditions and 5 min under photothermal conditions. Continuous-flow experiments showed sustained iodine adsorption of 92 % and Cr(VI) reduction of 81 % over 240 min. This research highlights the potential of PDA-enhanced cellulose-based composites as highly efficient and sustainable platforms for practical water remediation and environmental protection.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"351 ","pages":"Article 123090"},"PeriodicalIF":10.7000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S014486172401316X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The global challenge of wastewater contamination, especially from persistent pollutants like radioactive isotopes and heavy metals, demands innovative purification solutions. Radioactive iodine isotopes (131I and 129I), stemming from nuclear activities, pose serious health risks due to their mobility, bioaccumulation, and ionizing radiation, particularly impacting thyroid health. Similarly, hexavalent chromium, Cr(VI), is highly toxic and persistent in water, linked to cancer and other severe health issues. Developing effective technologies for iodine capture and Cr(VI) reduction is therefore critical for public health and environmental protection. This study presents two distinct cellulose-based composite materials tailored for environmental remediation: cellulose/graphene oxide/polydopamine (cellulose/GO/PDA) monoliths for iodine capture and cellulose/graphene oxide/polydopamine/palladium nano-crystals (cellulose/GO/PDA/Pd) monoliths for the reduction of Cr(VI). PDA substantially enhances the adsorptive, catalytic and photothermal properties of monoliths. The monoliths demonstrated exceptional performance in both batch and continuous-flow reactor studies. Complete iodine removal was achieved within 15 s, while Cr(VI) was entirely reduced within 9 min under dark conditions and 5 min under photothermal conditions. Continuous-flow experiments showed sustained iodine adsorption of 92 % and Cr(VI) reduction of 81 % over 240 min. This research highlights the potential of PDA-enhanced cellulose-based composites as highly efficient and sustainable platforms for practical water remediation and environmental protection.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Carbohydrate Polymers
Carbohydrate Polymers 化学-高分子科学
CiteScore
22.40
自引率
8.00%
发文量
1286
审稿时长
47 days
期刊介绍: Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience. The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.
期刊最新文献
Corrigendum to "Dissecting the Enterococcal Polysaccharide Antigen (EPA) structure to explore innate immune evasion and phage specificity" [Carbohydr. Polym. 347 (1 January 2025) 122686]. Editorial Board In situ growth of defective ZIF-8 on TEMPO-oxidized cellulose nanofibrils for rapid response release of curcumin in food preservation Polydopamine-integrated cellulose/graphene oxide monoliths: A versatile platform for efficient continuous-flow iodine capture and photothermal-enhanced reduction of Cr(VI) Accelerating repair of infected bone defects through post-reinforced injectable hydrogel mediated antibacterial/immunoregulatory microenvironment at bone-hydrogel interface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1