Insights into predicting equilibrium conditions of clathrate hydrates of methane + water-soluble hydrate former

IF 6.7 1区 工程技术 Q2 ENERGY & FUELS Fuel Pub Date : 2024-12-02 DOI:10.1016/j.fuel.2024.133945
Mostafa Hosseini , Richard Boudreault , Yuri Leonenko
{"title":"Insights into predicting equilibrium conditions of clathrate hydrates of methane + water-soluble hydrate former","authors":"Mostafa Hosseini ,&nbsp;Richard Boudreault ,&nbsp;Yuri Leonenko","doi":"10.1016/j.fuel.2024.133945","DOIUrl":null,"url":null,"abstract":"<div><div>This study aims to improve the prediction of equilibrium conditions in methane hydrate systems by incorporating diverse water-soluble hydrate formers and applying advanced machine learning techniques. Methane hydrates, which naturally form under high pressure and low temperature, can be more efficiently formed or dissociated by altering thermodynamic conditions using these hydrate formers. Accurate prediction of these conditions is crucial for optimizing gas storage and energy applications. In this research, molecular descriptors and operational parameters, such as mole fraction and pressure, are used as input variables to predict equilibrium temperature. Machine learning methods, including Decision Trees (DT), Random Forests (RF), Support Vector Machines (SVM), and Multi-Layer Perceptron (MLP), were employed with a novel data-splitting approach based on hydrate formers rather than traditional sample-based methods. Among these models, the RF achieved the highest performance, with a coefficient of determination (R<sup>2</sup>) of 0.930, a root mean square error (RMSE) of 1.71, and an average absolute relative deviation (AARD) of 0.48%. Feature selection, preprocessing, and Shapley Additive Explanations (SHAP) provided valuable insights into the influence of specific variables on model predictions. Additionally, a supplementary examination, termed the reduced model, highlights the critical role of proper feature selection, with certain features regarded as less important yet essential for the functionality of distance-based models, particularly for models like SVM and MLP. This work advances methane hydrate research by offering a more accurate and interpretable framework for predicting hydrate equilibrium, addressing key gaps in previous studies, and extending its applicability to a broader range of systems. Moreover, the introduction of a former-based data-splitting method improves generalization across different hydrate formers, while the use of SHAP values for model interpretability offers deeper insights into the relationships between molecular descriptors and hydrate equilibrium conditions. This study paves the way for improved selection of hydrate formers in hydrate systems.</div></div>","PeriodicalId":325,"journal":{"name":"Fuel","volume":"384 ","pages":"Article 133945"},"PeriodicalIF":6.7000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016236124030953","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to improve the prediction of equilibrium conditions in methane hydrate systems by incorporating diverse water-soluble hydrate formers and applying advanced machine learning techniques. Methane hydrates, which naturally form under high pressure and low temperature, can be more efficiently formed or dissociated by altering thermodynamic conditions using these hydrate formers. Accurate prediction of these conditions is crucial for optimizing gas storage and energy applications. In this research, molecular descriptors and operational parameters, such as mole fraction and pressure, are used as input variables to predict equilibrium temperature. Machine learning methods, including Decision Trees (DT), Random Forests (RF), Support Vector Machines (SVM), and Multi-Layer Perceptron (MLP), were employed with a novel data-splitting approach based on hydrate formers rather than traditional sample-based methods. Among these models, the RF achieved the highest performance, with a coefficient of determination (R2) of 0.930, a root mean square error (RMSE) of 1.71, and an average absolute relative deviation (AARD) of 0.48%. Feature selection, preprocessing, and Shapley Additive Explanations (SHAP) provided valuable insights into the influence of specific variables on model predictions. Additionally, a supplementary examination, termed the reduced model, highlights the critical role of proper feature selection, with certain features regarded as less important yet essential for the functionality of distance-based models, particularly for models like SVM and MLP. This work advances methane hydrate research by offering a more accurate and interpretable framework for predicting hydrate equilibrium, addressing key gaps in previous studies, and extending its applicability to a broader range of systems. Moreover, the introduction of a former-based data-splitting method improves generalization across different hydrate formers, while the use of SHAP values for model interpretability offers deeper insights into the relationships between molecular descriptors and hydrate equilibrium conditions. This study paves the way for improved selection of hydrate formers in hydrate systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Fuel
Fuel 工程技术-工程:化工
CiteScore
12.80
自引率
20.30%
发文量
3506
审稿时长
64 days
期刊介绍: The exploration of energy sources remains a critical matter of study. For the past nine decades, fuel has consistently held the forefront in primary research efforts within the field of energy science. This area of investigation encompasses a wide range of subjects, with a particular emphasis on emerging concerns like environmental factors and pollution.
期刊最新文献
Preparation of pitch-based carbon fiber from medium coal tar pitch refined by wash oil Hierarchically porous carbon wood sponge decorated with bimetallic sites: A highly efficient electrocatalyst for hydrogen evolution in universal-pH electrolytes and seawater Formation and snake-eating like solubilization mechanisms of rhamnolipid vesicles for oil components and amino acids Sulfur doping and heterostructure on NiSe@Co(OH)2 with facilitated surface reconstruction and interfacial electron regulation to boost oxygen evolution reaction Insight of oil-soluble Fe-based catalyst for direct liquefaction of Shangwan coal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1