Development of a data-driven three-dimensional PM2.5 forecast model based on machine learning algorithms

IF 6.7 2区 环境科学与生态学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Environmental Technology & Innovation Pub Date : 2024-11-29 DOI:10.1016/j.eti.2024.103930
Zizhen Han , Tianyi Guan , Xinfeng Wang , Xin Xin , Xiaomeng Song , Yidan Wang , Can Dong , Pengjie Ren , Zhumin Chen , Shilong Ren , Qingzhu Zhang , Qiao Wang
{"title":"Development of a data-driven three-dimensional PM2.5 forecast model based on machine learning algorithms","authors":"Zizhen Han ,&nbsp;Tianyi Guan ,&nbsp;Xinfeng Wang ,&nbsp;Xin Xin ,&nbsp;Xiaomeng Song ,&nbsp;Yidan Wang ,&nbsp;Can Dong ,&nbsp;Pengjie Ren ,&nbsp;Zhumin Chen ,&nbsp;Shilong Ren ,&nbsp;Qingzhu Zhang ,&nbsp;Qiao Wang","doi":"10.1016/j.eti.2024.103930","DOIUrl":null,"url":null,"abstract":"<div><div>Fine particle matter (PM<sub>2.5</sub>) pollution is a global environmental problem and has significant impacts on air quality and human health. Accurate prediction is crucial for mitigating PM<sub>2.5</sub> pollution and reducing its environmental and health impacts. However, the current data-driven PM<sub>2.5</sub> prediction model does not fully consider the vertical distribution pattern and the contribution of source emissions to achieve a broader and more accurate prediction of PM<sub>2.5</sub>. This study introduces a novel approach to predict three-dimensional (3D) air quality at a high spatial-temporal resolution, with multi-source data and machine learning algorithms. Specifically, we developed a two-stage 3D PM<sub>2.5</sub> prediction model by standardizing and integrating meteorology data, anthropogenic emission inventory data, air quality monitoring data, and satellite remote sensing data into a 3D dataset. In the first stage, we used random forest (RF) models to estimate the spatial-temporal distributions of aerosol optical depth (AOD) and ozone (O<sub>3</sub>) density. In the second stage, we further used these estimations to predict hourly PM<sub>2.5</sub> concentrations at both the surface and altitude levels with another RF model. To enhance the prediction performance, dynamic corrections were implemented to the predicted PM<sub>2.5</sub> concentrations. Using this model, we predicted PM<sub>2.5</sub> concentrations for the next 72 hours and validated the spatial-temporal fluctuations against monitoring data across Shandong Province, China. Furthermore, we assessed the contribution of local emissions and evaluated the air quality improvement resulting from local emission reduction measures. Our findings confirm the capability of the data-driven machine learning model for 3D air quality prediction on a regional scale, emphasizing the importance of regional emission control to improve local air quality.</div></div>","PeriodicalId":11725,"journal":{"name":"Environmental Technology & Innovation","volume":"37 ","pages":"Article 103930"},"PeriodicalIF":6.7000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology & Innovation","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352186424004061","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Fine particle matter (PM2.5) pollution is a global environmental problem and has significant impacts on air quality and human health. Accurate prediction is crucial for mitigating PM2.5 pollution and reducing its environmental and health impacts. However, the current data-driven PM2.5 prediction model does not fully consider the vertical distribution pattern and the contribution of source emissions to achieve a broader and more accurate prediction of PM2.5. This study introduces a novel approach to predict three-dimensional (3D) air quality at a high spatial-temporal resolution, with multi-source data and machine learning algorithms. Specifically, we developed a two-stage 3D PM2.5 prediction model by standardizing and integrating meteorology data, anthropogenic emission inventory data, air quality monitoring data, and satellite remote sensing data into a 3D dataset. In the first stage, we used random forest (RF) models to estimate the spatial-temporal distributions of aerosol optical depth (AOD) and ozone (O3) density. In the second stage, we further used these estimations to predict hourly PM2.5 concentrations at both the surface and altitude levels with another RF model. To enhance the prediction performance, dynamic corrections were implemented to the predicted PM2.5 concentrations. Using this model, we predicted PM2.5 concentrations for the next 72 hours and validated the spatial-temporal fluctuations against monitoring data across Shandong Province, China. Furthermore, we assessed the contribution of local emissions and evaluated the air quality improvement resulting from local emission reduction measures. Our findings confirm the capability of the data-driven machine learning model for 3D air quality prediction on a regional scale, emphasizing the importance of regional emission control to improve local air quality.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Technology & Innovation
Environmental Technology & Innovation Environmental Science-General Environmental Science
CiteScore
14.00
自引率
4.20%
发文量
435
审稿时长
74 days
期刊介绍: Environmental Technology & Innovation adopts a challenge-oriented approach to solutions by integrating natural sciences to promote a sustainable future. The journal aims to foster the creation and development of innovative products, technologies, and ideas that enhance the environment, with impacts across soil, air, water, and food in rural and urban areas. As a platform for disseminating scientific evidence for environmental protection and sustainable development, the journal emphasizes fundamental science, methodologies, tools, techniques, and policy considerations. It emphasizes the importance of science and technology in environmental benefits, including smarter, cleaner technologies for environmental protection, more efficient resource processing methods, and the evidence supporting their effectiveness.
期刊最新文献
Biological nitrogen fixation driven by methane anaerobic oxidation supports the complex biological communities in cold-seep habitat Effects of combined applications of S-nZVI and organic amendments on cadmium and arsenic accumulation in rice: Possible mechanisms and potential impacts on soil health Microcoleus vaginatus: A novel amendment for constructing artificial soil from tailings Waste napkin biochar with high-performance designed for antibiotic rapidly removal Leveraging metabolomics and ionomics to illuminate aluminum-induced toxicity in mouse organs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1