Microalgae-mediated bioremediation: Metabolomic profiling and Adaptive Responses under Amoxicillin-induced stress

IF 6.7 2区 环境科学与生态学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Environmental Technology & Innovation Pub Date : 2024-11-28 DOI:10.1016/j.eti.2024.103920
Bhawna Bisht , Afzal Hussain , Arun Kumar , Waseem Ahmad , Jerin James , Manisha Nanda , Mikhail. S Vlaskin , Monu Verma , Vinod Kumar
{"title":"Microalgae-mediated bioremediation: Metabolomic profiling and Adaptive Responses under Amoxicillin-induced stress","authors":"Bhawna Bisht ,&nbsp;Afzal Hussain ,&nbsp;Arun Kumar ,&nbsp;Waseem Ahmad ,&nbsp;Jerin James ,&nbsp;Manisha Nanda ,&nbsp;Mikhail. S Vlaskin ,&nbsp;Monu Verma ,&nbsp;Vinod Kumar","doi":"10.1016/j.eti.2024.103920","DOIUrl":null,"url":null,"abstract":"<div><div>This study examines the effects of varying concentrations (25, 50, 100, and 150<!--> <!-->mg/L) of Amoxicillin-3000 (AMOX), a widely prescribed beta-lactam antibiotic, on the growth of the microalga <em>Chlorella sorokiniana</em> UUIND6. Results revealed that low AMOX concentration (25<!--> <!-->mg/L) stimulated best algal growth, prompting further exploration of AMOX degradation processes, identification of transformation products, biochemical composition of microalgae. Photodegradation, both direct (light) and indirect (induced by microalgae) was examined. LCMS identified similar transformation product in both the photodegradation with a m/z ratio of 367.1. Moreover, microalgae-induced c photodegradation resulted in negligible zone of inhibition after 96<!--> <!-->h, achieving an impressive 98.8% degradation, significantly surpassing the 85.5% degradation observed with light alone. Modifications in abiotic factors also influence the stoichiometry of microalgae cells, resulting in significantly higher lipid (31.24 ± 2.93%) and protein (44.12 ± 1.75%) content compared to control cells (lipid 23.6 ± 2.4%, protein 31.62 ± 1.52%), indicating notable metabolic alterations (p&lt;0.05) under AMOX-induced stress. Additionally, increased reactive oxygen species (ROS) scavenging activity (48.89 ± 2.51%) suggests photosynthetic impairment and a decrease in TPC and TFC content, aiding in the prevention of oxidative stress. Overall, this study highlights the advantages of <em>Chlorella</em>-induced bioremediation of AMOX via photodegradation over light-driven processes. It presents a practical, sustainable approach for mitigating ecological risks in freshwater ecosystems and provides insights into antibiotic removal mechanisms and performance in microalgae-based systems under environmentally relevant conditions.</div></div>","PeriodicalId":11725,"journal":{"name":"Environmental Technology & Innovation","volume":"37 ","pages":"Article 103920"},"PeriodicalIF":6.7000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology & Innovation","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352186424003961","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study examines the effects of varying concentrations (25, 50, 100, and 150 mg/L) of Amoxicillin-3000 (AMOX), a widely prescribed beta-lactam antibiotic, on the growth of the microalga Chlorella sorokiniana UUIND6. Results revealed that low AMOX concentration (25 mg/L) stimulated best algal growth, prompting further exploration of AMOX degradation processes, identification of transformation products, biochemical composition of microalgae. Photodegradation, both direct (light) and indirect (induced by microalgae) was examined. LCMS identified similar transformation product in both the photodegradation with a m/z ratio of 367.1. Moreover, microalgae-induced c photodegradation resulted in negligible zone of inhibition after 96 h, achieving an impressive 98.8% degradation, significantly surpassing the 85.5% degradation observed with light alone. Modifications in abiotic factors also influence the stoichiometry of microalgae cells, resulting in significantly higher lipid (31.24 ± 2.93%) and protein (44.12 ± 1.75%) content compared to control cells (lipid 23.6 ± 2.4%, protein 31.62 ± 1.52%), indicating notable metabolic alterations (p<0.05) under AMOX-induced stress. Additionally, increased reactive oxygen species (ROS) scavenging activity (48.89 ± 2.51%) suggests photosynthetic impairment and a decrease in TPC and TFC content, aiding in the prevention of oxidative stress. Overall, this study highlights the advantages of Chlorella-induced bioremediation of AMOX via photodegradation over light-driven processes. It presents a practical, sustainable approach for mitigating ecological risks in freshwater ecosystems and provides insights into antibiotic removal mechanisms and performance in microalgae-based systems under environmentally relevant conditions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Technology & Innovation
Environmental Technology & Innovation Environmental Science-General Environmental Science
CiteScore
14.00
自引率
4.20%
发文量
435
审稿时长
74 days
期刊介绍: Environmental Technology & Innovation adopts a challenge-oriented approach to solutions by integrating natural sciences to promote a sustainable future. The journal aims to foster the creation and development of innovative products, technologies, and ideas that enhance the environment, with impacts across soil, air, water, and food in rural and urban areas. As a platform for disseminating scientific evidence for environmental protection and sustainable development, the journal emphasizes fundamental science, methodologies, tools, techniques, and policy considerations. It emphasizes the importance of science and technology in environmental benefits, including smarter, cleaner technologies for environmental protection, more efficient resource processing methods, and the evidence supporting their effectiveness.
期刊最新文献
Biological nitrogen fixation driven by methane anaerobic oxidation supports the complex biological communities in cold-seep habitat Effects of combined applications of S-nZVI and organic amendments on cadmium and arsenic accumulation in rice: Possible mechanisms and potential impacts on soil health Microcoleus vaginatus: A novel amendment for constructing artificial soil from tailings Waste napkin biochar with high-performance designed for antibiotic rapidly removal Leveraging metabolomics and ionomics to illuminate aluminum-induced toxicity in mouse organs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1