Quantifying organic carbon burial rates and stocks in seagrass meadow sediments influenced by sargassum-brown tides

IF 3 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Marine environmental research Pub Date : 2024-11-27 DOI:10.1016/j.marenvres.2024.106875
Melisa Aranza Sánchez-Rojas , Ana Carolina Ruiz-Fernández , Brigitta I. van Tussenbroek , Joan-Albert Sanchez-Cabeza , Libia Hascibe Pérez-Bernal , José Gilberto Cardoso-Mohedano
{"title":"Quantifying organic carbon burial rates and stocks in seagrass meadow sediments influenced by sargassum-brown tides","authors":"Melisa Aranza Sánchez-Rojas ,&nbsp;Ana Carolina Ruiz-Fernández ,&nbsp;Brigitta I. van Tussenbroek ,&nbsp;Joan-Albert Sanchez-Cabeza ,&nbsp;Libia Hascibe Pérez-Bernal ,&nbsp;José Gilberto Cardoso-Mohedano","doi":"10.1016/j.marenvres.2024.106875","DOIUrl":null,"url":null,"abstract":"<div><div>Seagrass meadow sediments are efficient organic carbon (C<sub>org</sub>) sinks and can store C<sub>org</sub> for hundreds of years. The temporal variation of C<sub>org</sub> burial rates and stocks over recent decades at nearshore seagrass meadows in the Puerto Morelos Reef Lagoon, Mexico, was evaluated in <sup>210</sup>Pb-dated sediment cores from nearshore meadows dominated by <em>Thalassia testudinum.</em> The sediments were predominantly sandy (&gt;52% sand) rich in carbonate grains (11.8–12.5% C<sub>inorg</sub>) with minor C<sub>org</sub> (0.24–1.12%) and N<sub>org</sub> (0.02–0.13%) concentrations. The C:N ratio (9.4–13.0) indicated that marine-derived C<sub>org</sub> was prevalent. C<sub>org</sub> stocks in the upper 30 cm sediment were 15.9 ± 3.0–24.8 ± 4.6 Mg ha<sup>−1</sup>. Sedimentary mass accumulation rates (MAR) (0.7–1.5 g cm<sup>−2</sup> yr<sup>−1</sup>) were higher than those previously recorded in seagrass sediments from the reef lagoon and other parts of the world. The highest MAR values, recorded in 2015 (±0.13) and 2018 (±0.03), coincided with the peak sargassum influx years. MAR and C<sub>org</sub> burial rates (11.4–133 g m<sup>−2</sup> yr<sup>−1</sup>) were correlated (r<sup>2</sup> = 0.76), indicating that the massive influxes of sargassum have accelerated C<sub>org</sub> burial rates in the region since 2015. This study marks the initial evaluation of the interaction between the massive influx of sargassum, MAR, and C<sub>org</sub> burial rates in seagrass sediments, potentially laying the groundwork for future extended monitoring initiatives.</div></div>","PeriodicalId":18204,"journal":{"name":"Marine environmental research","volume":"204 ","pages":"Article 106875"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine environmental research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141113624005361","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Seagrass meadow sediments are efficient organic carbon (Corg) sinks and can store Corg for hundreds of years. The temporal variation of Corg burial rates and stocks over recent decades at nearshore seagrass meadows in the Puerto Morelos Reef Lagoon, Mexico, was evaluated in 210Pb-dated sediment cores from nearshore meadows dominated by Thalassia testudinum. The sediments were predominantly sandy (>52% sand) rich in carbonate grains (11.8–12.5% Cinorg) with minor Corg (0.24–1.12%) and Norg (0.02–0.13%) concentrations. The C:N ratio (9.4–13.0) indicated that marine-derived Corg was prevalent. Corg stocks in the upper 30 cm sediment were 15.9 ± 3.0–24.8 ± 4.6 Mg ha−1. Sedimentary mass accumulation rates (MAR) (0.7–1.5 g cm−2 yr−1) were higher than those previously recorded in seagrass sediments from the reef lagoon and other parts of the world. The highest MAR values, recorded in 2015 (±0.13) and 2018 (±0.03), coincided with the peak sargassum influx years. MAR and Corg burial rates (11.4–133 g m−2 yr−1) were correlated (r2 = 0.76), indicating that the massive influxes of sargassum have accelerated Corg burial rates in the region since 2015. This study marks the initial evaluation of the interaction between the massive influx of sargassum, MAR, and Corg burial rates in seagrass sediments, potentially laying the groundwork for future extended monitoring initiatives.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Marine environmental research
Marine environmental research 环境科学-毒理学
CiteScore
5.90
自引率
3.00%
发文量
217
审稿时长
46 days
期刊介绍: Marine Environmental Research publishes original research papers on chemical, physical, and biological interactions in the oceans and coastal waters. The journal serves as a forum for new information on biology, chemistry, and toxicology and syntheses that advance understanding of marine environmental processes. Submission of multidisciplinary studies is encouraged. Studies that utilize experimental approaches to clarify the roles of anthropogenic and natural causes of changes in marine ecosystems are especially welcome, as are those studies that represent new developments of a theoretical or conceptual aspect of marine science. All papers published in this journal are reviewed by qualified peers prior to acceptance and publication. Examples of topics considered to be appropriate for the journal include, but are not limited to, the following: – The extent, persistence, and consequences of change and the recovery from such change in natural marine systems – The biochemical, physiological, and ecological consequences of contaminants to marine organisms and ecosystems – The biogeochemistry of naturally occurring and anthropogenic substances – Models that describe and predict the above processes – Monitoring studies, to the extent that their results provide new information on functional processes – Methodological papers describing improved quantitative techniques for the marine sciences.
期刊最新文献
Corrigendum to "Long-term warming and acidification interaction drives plastic acclimation in the diatom Pseudo-nitzschia multiseries" [Mar. Environ. Res. 204 (2025) 106901]. Effect of marine anoxia on the conversion of macroalgal biomass to refractory dissolved organic carbon. Gradient experiment reveals physiological stress from heavy metal zinc on the economically valuable seaweed Sargassum fusiforme. Microscale intertidal habitats modulate shell break resistance of the prey; Implications for prey selection. Multi-interacting global-change drivers reduce photosynthetic and resource use efficiencies and prompt a microzooplankton-phytoplankton uncoupling in estuarine communities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1