{"title":"Meta-learning for model-reference data-driven control","authors":"Riccardo Busetto , Valentina Breschi , Simone Formentin","doi":"10.1016/j.automatica.2024.112006","DOIUrl":null,"url":null,"abstract":"<div><div>One-shot direct model-reference control design techniques, like the Virtual Reference Feedback Tuning (VRFT) approach, offer time-saving solutions for calibrating fixed-structure controllers. Nonetheless, such methods are known to be highly sensitive to the quality of data, often requiring long and costly experiments to attain acceptable closed-loop performance. These features might prevent the widespread adoption of such techniques, especially in low-data regimes. In this paper, we argue that the inherent similarity of many industrially relevant systems may come at hand, offering additional information from plants that are similar (yet not equal) to the system one aims to control. Assuming that this supplementary information is available, we propose a novel, direct design approach that leverages data from similar plants, the knowledge of controllers calibrated on them, and the corresponding closed-loop performance to enhance model-reference control design. By constructing the new controller as a combination of the available ones, our approach exploits all the available priors following a <em>meta-learning</em> philosophy, ensuring non-decreasing performance. An extensive numerical analysis supports our claims, highlighting the effectiveness of the proposed method in achieving performance comparable to iterative approaches, while retaining the efficiency of one-shot direct data-driven methods like VRFT.</div></div>","PeriodicalId":55413,"journal":{"name":"Automatica","volume":"172 ","pages":"Article 112006"},"PeriodicalIF":4.8000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automatica","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005109824005004","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
One-shot direct model-reference control design techniques, like the Virtual Reference Feedback Tuning (VRFT) approach, offer time-saving solutions for calibrating fixed-structure controllers. Nonetheless, such methods are known to be highly sensitive to the quality of data, often requiring long and costly experiments to attain acceptable closed-loop performance. These features might prevent the widespread adoption of such techniques, especially in low-data regimes. In this paper, we argue that the inherent similarity of many industrially relevant systems may come at hand, offering additional information from plants that are similar (yet not equal) to the system one aims to control. Assuming that this supplementary information is available, we propose a novel, direct design approach that leverages data from similar plants, the knowledge of controllers calibrated on them, and the corresponding closed-loop performance to enhance model-reference control design. By constructing the new controller as a combination of the available ones, our approach exploits all the available priors following a meta-learning philosophy, ensuring non-decreasing performance. An extensive numerical analysis supports our claims, highlighting the effectiveness of the proposed method in achieving performance comparable to iterative approaches, while retaining the efficiency of one-shot direct data-driven methods like VRFT.
期刊介绍:
Automatica is a leading archival publication in the field of systems and control. The field encompasses today a broad set of areas and topics, and is thriving not only within itself but also in terms of its impact on other fields, such as communications, computers, biology, energy and economics. Since its inception in 1963, Automatica has kept abreast with the evolution of the field over the years, and has emerged as a leading publication driving the trends in the field.
After being founded in 1963, Automatica became a journal of the International Federation of Automatic Control (IFAC) in 1969. It features a characteristic blend of theoretical and applied papers of archival, lasting value, reporting cutting edge research results by authors across the globe. It features articles in distinct categories, including regular, brief and survey papers, technical communiqués, correspondence items, as well as reviews on published books of interest to the readership. It occasionally publishes special issues on emerging new topics or established mature topics of interest to a broad audience.
Automatica solicits original high-quality contributions in all the categories listed above, and in all areas of systems and control interpreted in a broad sense and evolving constantly. They may be submitted directly to a subject editor or to the Editor-in-Chief if not sure about the subject area. Editorial procedures in place assure careful, fair, and prompt handling of all submitted articles. Accepted papers appear in the journal in the shortest time feasible given production time constraints.