Fault growth and rupture history based on displacement distribution along the Luoshan Fault, NW China

IF 2.9 Q2 GEOGRAPHY, PHYSICAL Quaternary Science Advances Pub Date : 2024-11-26 DOI:10.1016/j.qsa.2024.100255
Haoyu Zhou , Wenjun Zheng , Dongli Zhang , Xin Sun , Bingxu Liu , Shiqi Wei , Guang Yang
{"title":"Fault growth and rupture history based on displacement distribution along the Luoshan Fault, NW China","authors":"Haoyu Zhou ,&nbsp;Wenjun Zheng ,&nbsp;Dongli Zhang ,&nbsp;Xin Sun ,&nbsp;Bingxu Liu ,&nbsp;Shiqi Wei ,&nbsp;Guang Yang","doi":"10.1016/j.qsa.2024.100255","DOIUrl":null,"url":null,"abstract":"<div><div>The growth and development of faults are driven by repetitive earthquakes, which accumulate displacement and extend rupture lengths. This process changes fault morphology, resulting in surface ruptures that are preserved in the geomorphology as displaced landforms. High-resolution geomorphic data enable the precise acquisition of these displaced landforms, facilitating detailed analysis of slip distributions along faults and offering quantitative constraints on the growth and rupture history of faults. In this study, an airborne light detection and ranging (LiDAR) system was employed to obtain 0.5-m resolution geomorphic data &gt;500 m long on both sides of the Luoshan Fault on the northeastern Tibetan Plateau. By interpreting and distinguishing different geomorphic markers, we identified and measured 436 right-lateral offsets along the Luoshan Fault. Based on statistical analysis methods, we determined that there were six strong earthquakes within 10 m of the cumulative displacement along the Luoshan Fault. Except for the latest event, the other five strong events showed regular displacement increments of approximately 1.9 m, revealing a strong earthquake pattern of approximate characteristic slip. The different cumulative displacement distributions correspond to various stages of fault growth. The growth pattern of the Luoshan Fault evolves from fault tip propagation and linkage (Events 1–5) to a mode of growth with a constant fault length but increased cumulative displacement (Event 6). Based on the displacement distribution along the Luoshan Fault, the northern segment is more likely to experience earthquake events, with magnitudes ranging from Mw 6.84 to 7.12.</div></div>","PeriodicalId":34142,"journal":{"name":"Quaternary Science Advances","volume":"17 ","pages":"Article 100255"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quaternary Science Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666033424000935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The growth and development of faults are driven by repetitive earthquakes, which accumulate displacement and extend rupture lengths. This process changes fault morphology, resulting in surface ruptures that are preserved in the geomorphology as displaced landforms. High-resolution geomorphic data enable the precise acquisition of these displaced landforms, facilitating detailed analysis of slip distributions along faults and offering quantitative constraints on the growth and rupture history of faults. In this study, an airborne light detection and ranging (LiDAR) system was employed to obtain 0.5-m resolution geomorphic data >500 m long on both sides of the Luoshan Fault on the northeastern Tibetan Plateau. By interpreting and distinguishing different geomorphic markers, we identified and measured 436 right-lateral offsets along the Luoshan Fault. Based on statistical analysis methods, we determined that there were six strong earthquakes within 10 m of the cumulative displacement along the Luoshan Fault. Except for the latest event, the other five strong events showed regular displacement increments of approximately 1.9 m, revealing a strong earthquake pattern of approximate characteristic slip. The different cumulative displacement distributions correspond to various stages of fault growth. The growth pattern of the Luoshan Fault evolves from fault tip propagation and linkage (Events 1–5) to a mode of growth with a constant fault length but increased cumulative displacement (Event 6). Based on the displacement distribution along the Luoshan Fault, the northern segment is more likely to experience earthquake events, with magnitudes ranging from Mw 6.84 to 7.12.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Quaternary Science Advances
Quaternary Science Advances Earth and Planetary Sciences-Earth-Surface Processes
CiteScore
4.00
自引率
13.30%
发文量
16
审稿时长
61 days
期刊最新文献
Fault growth and rupture history based on displacement distribution along the Luoshan Fault, NW China In-situ and modelled debris thickness distribution on Panchi Nala Glacier (western Himalaya, India) and its impact on glacier state Tracing drainage capture between the two large tributaries of the Yangtze River in the southeastern Tibetan plateau: Insights from detrital apatite fission-track thermochronology GIS and remote sensing-based wildlife habitat suitability analysis for Mountain Nyala (Tragelaphus buxtoni) at Bale Mountains National Park, Ethiopia Combined GIS, FR and AHP approaches to landslide susceptibility and risk zonation in the Baso Liben district, Northwestern Ethiopia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1