OPA1 Mediated Fatty Acid β-Oxidation in Hepatocyte: The Novel Insight for Melatonin Attenuated Apoptosis in Concanavalin A Induced Acute Liver Injury

IF 8.3 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Journal of Pineal Research Pub Date : 2024-12-02 DOI:10.1111/jpi.70010
Tong Chen, Ruonan Shuang, Tiantian Gao, Lijun Ai, Jichen Diao, Xinyi Yuan, Ling He, Weiwei Tao, Xin Huang
{"title":"OPA1 Mediated Fatty Acid β-Oxidation in Hepatocyte: The Novel Insight for Melatonin Attenuated Apoptosis in Concanavalin A Induced Acute Liver Injury","authors":"Tong Chen,&nbsp;Ruonan Shuang,&nbsp;Tiantian Gao,&nbsp;Lijun Ai,&nbsp;Jichen Diao,&nbsp;Xinyi Yuan,&nbsp;Ling He,&nbsp;Weiwei Tao,&nbsp;Xin Huang","doi":"10.1111/jpi.70010","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Melatonin (MLT) has been reported to attenuate Concanavalin A (Con A)-induced acute liver injury via the inhibition of immune cells. Whereas the response of hepatocyte to Con A-caused inflammatory storm and the mechanism of MLT on hepatocyte remain not fully understood. Our RNA-seq and bioinformatic analyses suggested that OPA1 and fatty acid β-oxidation might be critical. It was found that MLT ameliorated Con A-induced acute liver injury, promoted mitochondrial fusion, fatty acid β-oxidation, modulated metabolic reprogramming and inhibited apoptosis. The overexpression and knockdown of OPA1 by adenovirus proved that these processes were governed by OPA1. With the overexpression plasmid, agonist, inhibitor and SiRNA, we found that MLT promoted OPA1 upregulation to enhance fatty acid β-oxidation, which inhibited apoptosis. The MLT and OPA1-promoted fatty acid β-oxidation enhanced ATP production rather than reduced lipid accumulation. AMPK/FOXO1 was required for MLT and OPA1-mediated fatty acid β-oxidation and apoptosis. NOTCH1 was also necessary for this apoptotic process. The results were verified in immune deficiency mice and AML12 cells induced by Con A-stimulated monocyte supernatant. MLT might control the transcription of OPA1 through MEF2A. TOMM70 was critical for MLT translocation and OPA1 upregulation. In conclusion, the present study demonstrated that MLT attenuated Con A-induced acute liver injury via the OPA1-controlled fatty acid β-oxidation to inhibit apoptosis in hepatocyte.</p></div>","PeriodicalId":198,"journal":{"name":"Journal of Pineal Research","volume":"76 8","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pineal Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jpi.70010","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Melatonin (MLT) has been reported to attenuate Concanavalin A (Con A)-induced acute liver injury via the inhibition of immune cells. Whereas the response of hepatocyte to Con A-caused inflammatory storm and the mechanism of MLT on hepatocyte remain not fully understood. Our RNA-seq and bioinformatic analyses suggested that OPA1 and fatty acid β-oxidation might be critical. It was found that MLT ameliorated Con A-induced acute liver injury, promoted mitochondrial fusion, fatty acid β-oxidation, modulated metabolic reprogramming and inhibited apoptosis. The overexpression and knockdown of OPA1 by adenovirus proved that these processes were governed by OPA1. With the overexpression plasmid, agonist, inhibitor and SiRNA, we found that MLT promoted OPA1 upregulation to enhance fatty acid β-oxidation, which inhibited apoptosis. The MLT and OPA1-promoted fatty acid β-oxidation enhanced ATP production rather than reduced lipid accumulation. AMPK/FOXO1 was required for MLT and OPA1-mediated fatty acid β-oxidation and apoptosis. NOTCH1 was also necessary for this apoptotic process. The results were verified in immune deficiency mice and AML12 cells induced by Con A-stimulated monocyte supernatant. MLT might control the transcription of OPA1 through MEF2A. TOMM70 was critical for MLT translocation and OPA1 upregulation. In conclusion, the present study demonstrated that MLT attenuated Con A-induced acute liver injury via the OPA1-controlled fatty acid β-oxidation to inhibit apoptosis in hepatocyte.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Pineal Research
Journal of Pineal Research 医学-内分泌学与代谢
CiteScore
17.70
自引率
4.90%
发文量
66
审稿时长
1 months
期刊介绍: The Journal of Pineal Research welcomes original scientific research on the pineal gland and melatonin in vertebrates, as well as the biological functions of melatonin in non-vertebrates, plants, and microorganisms. Criteria for publication include scientific importance, novelty, timeliness, and clarity of presentation. The journal considers experimental data that challenge current thinking and welcomes case reports contributing to understanding the pineal gland and melatonin research. Its aim is to serve researchers in all disciplines related to the pineal gland and melatonin.
期刊最新文献
Light Environment of Arctic Solstices is Coupled With Melatonin Phase-Amplitude Changes and Decline of Metabolic Health. Melatonin, an Antitumor Necrosis Factor Therapy. Melatonin Alleviates Circadian Rhythm Disruption-Induced Enhanced Luteinizing Hormone Pulse Frequency and Ovarian Dysfunction. Relating Photoperiod and Outdoor Temperature With Sleep Architecture in Patients With Neuropsychiatric Sleep Disorders. Skeletal Phenotyping of Period-1-Deficient Melatonin-Proficient Mice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1