首页 > 最新文献

Journal of Pineal Research最新文献

英文 中文
Melatonin and Exercise Restore Myogenesis and Mitochondrial Dynamics Deficits Associated With Sarcopenia in iMS-Bmal1−/− Mice
IF 8.3 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-04-17 DOI: 10.1111/jpi.70049
Yolanda Ramírez-Casas, José Fernández-Martínez, María Martín-Estebané, Paula Aranda-Martínez, Alba López-Rodríguez, Sergio Esquivel-Ruiz, Yang Yang, Germaine Escames, Darío Acuña-Castroviejo

Sarcopenia, a condition associated with aging, involves progressive loss of muscle mass, strength, and function, leading to impaired mobility, health, and increased mortality. The underlying mechanisms remain unclear, which limits the development of effective therapeutic interventions. Emerging evidence implicates chronodisruption as a key contributor to sarcopenia, emphasizing the role of Bmal1, a circadian clock gene critical for muscle integrity and mitochondrial function. In a skeletal muscle-specific and inducible Bmal1 knockout model (iMS-Bmal1−/−), we observed hallmark features of sarcopenia, including disrupted rhythms, impaired muscle function, and mitochondrial dysfunction. Exercise and melatonin treatment reversed these deficits independently of Bmal1. Building on these findings, the present study elucidates several mechanisms underlying these changes and the pathways by which melatonin and exercise exert their beneficial effects. Our findings indicate that iMS-Bmal1−/− mice exhibit reduced expression of satellite cell and muscle regulatory factors, indicating impaired muscle regeneration. While mitochondrial respiration remained unchanged, notable alterations in mitochondrial dynamics disrupted mitochondria in skeletal muscle. In addition, these mice showed alterations in muscle energy metabolism, compromised antioxidant defense, and inflammatory response. Remarkably, exercise and/or melatonin successfully mitigated these deficits, restoring muscle health in Bmal1-deficient mice. These findings position exercise and melatonin as promising therapeutic candidates for combating sarcopenia and emphasize the need to elucidate the molecular pathways underlying their protective effects.

{"title":"Melatonin and Exercise Restore Myogenesis and Mitochondrial Dynamics Deficits Associated With Sarcopenia in iMS-Bmal1−/− Mice","authors":"Yolanda Ramírez-Casas,&nbsp;José Fernández-Martínez,&nbsp;María Martín-Estebané,&nbsp;Paula Aranda-Martínez,&nbsp;Alba López-Rodríguez,&nbsp;Sergio Esquivel-Ruiz,&nbsp;Yang Yang,&nbsp;Germaine Escames,&nbsp;Darío Acuña-Castroviejo","doi":"10.1111/jpi.70049","DOIUrl":"https://doi.org/10.1111/jpi.70049","url":null,"abstract":"<div>\u0000 \u0000 <p>Sarcopenia, a condition associated with aging, involves progressive loss of muscle mass, strength, and function, leading to impaired mobility, health, and increased mortality. The underlying mechanisms remain unclear, which limits the development of effective therapeutic interventions. Emerging evidence implicates chronodisruption as a key contributor to sarcopenia, emphasizing the role of <i>Bmal1</i>, a circadian clock gene critical for muscle integrity and mitochondrial function. In a skeletal muscle-specific and inducible <i>Bmal1</i> knockout model (iMS-<i>Bmal1</i><sup>−/−</sup>), we observed hallmark features of sarcopenia, including disrupted rhythms, impaired muscle function, and mitochondrial dysfunction. Exercise and melatonin treatment reversed these deficits independently of <i>Bmal1</i>. Building on these findings, the present study elucidates several mechanisms underlying these changes and the pathways by which melatonin and exercise exert their beneficial effects. Our findings indicate that iMS-<i>Bmal1</i><sup>−/−</sup> mice exhibit reduced expression of satellite cell and muscle regulatory factors, indicating impaired muscle regeneration. While mitochondrial respiration remained unchanged, notable alterations in mitochondrial dynamics disrupted mitochondria in skeletal muscle. In addition, these mice showed alterations in muscle energy metabolism, compromised antioxidant defense, and inflammatory response. Remarkably, exercise and/or melatonin successfully mitigated these deficits, restoring muscle health in <i>Bmal1</i>-deficient mice. These findings position exercise and melatonin as promising therapeutic candidates for combating sarcopenia and emphasize the need to elucidate the molecular pathways underlying their protective effects.</p></div>","PeriodicalId":198,"journal":{"name":"Journal of Pineal Research","volume":"77 3","pages":""},"PeriodicalIF":8.3,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143840889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cell-Type-Specific mRNA N6-Methyladenosine Landscape and Regulatory Mechanisms Underlying Immune Dysregulation of Sleep-Deprived
IF 8.3 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-04-11 DOI: 10.1111/jpi.70046
Yakun Liu, Zhe Wang, Sha Liu, Xinrong Li, Denggao Wang, Dan Wang, Ying Li, Chaojie Liu, Yong Xu

Sleep deprivation impairs daytime cognitive functioning and is a risk factor for various diseases related to immune dysregulation. N6-methyladenosine (m6A) is a common epigenetic RNA modification with essential roles in regulating neurogenesis and circadian rhythms. m6A dysregulation resulting in immune imbalance has received much attention. In this study, we elucidated the landscape and specific mechanisms of m6A regulators in the peripheral blood of patients with sleep deprivation through RNA sequencing and single-cell transcriptomics data sets. We observed that m6A regulator upregulation aggravated sleep loss and immune disorders. Women were more sensitive to sleep deprivation. Notably, m6A regulator ALKBH5 was downregulated in peripheral blood mononuclear cells (PBMC) of patients with sleep deprivation at the transcriptome level. However, ALKBH5 was cell-type specific upregulated in T cells (TC), B cells (BC), and natural killer (NK) cells, involving the dysregulation of acquired immune mechanisms by aberrant cell–cell communication that mediated ligand–receptor interactions across diverse cell types. Furthermore, the immune dysregulation of sleep loss could be regulated by a potential pathway between ALKBH5 and CD99 in SH-SY5Y and HT22 cells. Sleep deprivation group CD3+/CD45+ T cells had higher levels of ALKBH5 mRNA than the control group. This study demonstrated that abnormal m6A modification patterns caused by m6A regulators play a key role in the dysregulation of innate and acquired immunity in sleep deprivation.

{"title":"Cell-Type-Specific mRNA N6-Methyladenosine Landscape and Regulatory Mechanisms Underlying Immune Dysregulation of Sleep-Deprived","authors":"Yakun Liu,&nbsp;Zhe Wang,&nbsp;Sha Liu,&nbsp;Xinrong Li,&nbsp;Denggao Wang,&nbsp;Dan Wang,&nbsp;Ying Li,&nbsp;Chaojie Liu,&nbsp;Yong Xu","doi":"10.1111/jpi.70046","DOIUrl":"https://doi.org/10.1111/jpi.70046","url":null,"abstract":"<div>\u0000 \u0000 <p>Sleep deprivation impairs daytime cognitive functioning and is a risk factor for various diseases related to immune dysregulation. N<sup>6</sup>-methyladenosine (m<sup>6</sup>A) is a common epigenetic RNA modification with essential roles in regulating neurogenesis and circadian rhythms. m<sup>6</sup>A dysregulation resulting in immune imbalance has received much attention. In this study, we elucidated the landscape and specific mechanisms of m<sup>6</sup>A regulators in the peripheral blood of patients with sleep deprivation through RNA sequencing and single-cell transcriptomics data sets. We observed that m<sup>6</sup>A regulator upregulation aggravated sleep loss and immune disorders. Women were more sensitive to sleep deprivation. Notably, m<sup>6</sup>A regulator <i>ALKBH5</i> was downregulated in peripheral blood mononuclear cells (PBMC) of patients with sleep deprivation at the transcriptome level. However, <i>ALKBH5</i> was cell-type specific upregulated in T cells (TC), B cells (BC), and natural killer (NK) cells, involving the dysregulation of acquired immune mechanisms by aberrant cell–cell communication that mediated ligand–receptor interactions across diverse cell types. Furthermore, the immune dysregulation of sleep loss could be regulated by a potential pathway between ALKBH5 and CD99 in SH-SY5Y and HT22 cells. Sleep deprivation group CD3<sup>+</sup>/CD45<sup>+</sup> T cells had higher levels of <i>ALKBH5</i> mRNA than the control group. This study demonstrated that abnormal m<sup>6</sup>A modification patterns caused by m<sup>6</sup>A regulators play a key role in the dysregulation of innate and acquired immunity in sleep deprivation.</p></div>","PeriodicalId":198,"journal":{"name":"Journal of Pineal Research","volume":"77 3","pages":""},"PeriodicalIF":8.3,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143818640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Circadian Rhythm Disruption in Triple-Negative Breast Cancer: Molecular Insights and Treatment Strategies
IF 8.3 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-04-07 DOI: 10.1111/jpi.70042
Li-Hua He, Xin-Yi Sui, Yu-Ling Xiao, Peng Ji, Yue Gong

Disruption of the circadian clock has been closely linked to the initiation, development, and progression of cancer. This study aims to explore the impact of circadian rhythm disruption (CRD) on triple-negative breast cancer (TNBC). We analyzed bulk and single-cell RNA sequencing data to assess circadian rhythm status in TNBC using multiple bioinformatic tools, alongside metabolomic profiles and tumor microenvironment evaluations to understand the influence of CRD on metabolic reprogramming and immune evasion. The results indicate that TNBC experiences profound CRD. Patients with a higher CRDscore exhibit significantly poorer relapse-free survival compared to those with a lower CRDscore. Cyclic ordering by periodic structure (CYCLOPS) identified significant changes in rhythmic gene expression patterns between TNBC and normal tissues, with TNBC showing a “rush hour” effect, where peak expression times are concentrated within specific time windows. Transcripts with disrupted circadian rhythms in TNBC were found to be involved in key pathways related to cell cycle regulation, metabolism, and immune response. Metabolomic analysis further revealed that TNBCs with high CRDscore are enriched in carbohydrate and amino acid metabolism pathways, notably showing upregulation of tryptophan metabolism. High CRDscore was also linked to an immunosuppressive tumor microenvironment, characterized by reduced immune cell infiltration, exhausted CD8+ T cells, and a diminished response to immune checkpoint blockade therapy. These findings suggest that the disrupted molecular clock in TNBC may activate tryptophan metabolism, thereby promoting immune evasion and potentially reducing the effectiveness of immunotherapy.

{"title":"Circadian Rhythm Disruption in Triple-Negative Breast Cancer: Molecular Insights and Treatment Strategies","authors":"Li-Hua He,&nbsp;Xin-Yi Sui,&nbsp;Yu-Ling Xiao,&nbsp;Peng Ji,&nbsp;Yue Gong","doi":"10.1111/jpi.70042","DOIUrl":"https://doi.org/10.1111/jpi.70042","url":null,"abstract":"<div>\u0000 \u0000 <p>Disruption of the circadian clock has been closely linked to the initiation, development, and progression of cancer. This study aims to explore the impact of circadian rhythm disruption (CRD) on triple-negative breast cancer (TNBC). We analyzed bulk and single-cell RNA sequencing data to assess circadian rhythm status in TNBC using multiple bioinformatic tools, alongside metabolomic profiles and tumor microenvironment evaluations to understand the influence of CRD on metabolic reprogramming and immune evasion. The results indicate that TNBC experiences profound CRD. Patients with a higher CRDscore exhibit significantly poorer relapse-free survival compared to those with a lower CRDscore. Cyclic ordering by periodic structure (CYCLOPS) identified significant changes in rhythmic gene expression patterns between TNBC and normal tissues, with TNBC showing a “rush hour” effect, where peak expression times are concentrated within specific time windows. Transcripts with disrupted circadian rhythms in TNBC were found to be involved in key pathways related to cell cycle regulation, metabolism, and immune response. Metabolomic analysis further revealed that TNBCs with high CRDscore are enriched in carbohydrate and amino acid metabolism pathways, notably showing upregulation of tryptophan metabolism. High CRDscore was also linked to an immunosuppressive tumor microenvironment, characterized by reduced immune cell infiltration, exhausted CD8<sup>+</sup> T cells, and a diminished response to immune checkpoint blockade therapy. These findings suggest that the disrupted molecular clock in TNBC may activate tryptophan metabolism, thereby promoting immune evasion and potentially reducing the effectiveness of immunotherapy.</p>\u0000 </div>","PeriodicalId":198,"journal":{"name":"Journal of Pineal Research","volume":"77 3","pages":""},"PeriodicalIF":8.3,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143787171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Melatonin Repairs the Lipidome of Human Hepatocytes Exposed to Cd and Free Fatty Acid-Induced Lipotoxicity
IF 8.3 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-04-07 DOI: 10.1111/jpi.70047
Anna Migni, Desirée Bartolini, Giada Marcantonini, Roccaldo Sardella, Mario Rende, Alessia Tognoloni, Maria Rachele Ceccarini, Francesco Galli

Hepatocyte lipotoxicity is central to the aetiology of nonalcoholic fatty liver disease (NAFLD), a leading cause of liver failure and transplantation worldwide. Long-lasting toxic pollutants have increasingly been considered as environmental risk factors of NAFLD. These include cadmium (Cd), a metal that synergizes with other cellular toxicants and metabolic stimuli to induce fat build-up and lipotoxicity. Recent studies demonstrated that melatonin (MLT) holds great potential as repairing agent in this form of hepatocyte lipotoxicity. In this study, the molecular hints of this MLT effect were investigated by lipidomics analysis in undifferentiated HepaRG cells, a human pre-hepatocyte cell line, exposed to Cd toxicity either alone or combined with prototypical free fatty acids (FFA), namely the saturated species palmitic acid and the monounsaturated oleic acid (OA and PA, respectively), to simulate the cellular lipotoxicity conditions of fatty liver disease. Cd exposure synergized with FFAs to induce cellular steatosis, and PA produced higher levels of lipotoxicity compared to OA by leading to increased levels of H2O2 production and apoptotic death. These effects were associated with changes of the cellular lipidome, which approximate those of NAFLD liver, with differentially expressed lipids in different classes that included triacylglycerols (TG), di- and mono-acylglycerols, phospholipids (PL), sphingolipids, acylcarnitines and FA; characteristic differences were observed in all these classes comparing the combinations of Cd exposure with PA or OA treatments. MLT significantly reduced the effects of either individual or combinatorial treatments of Cd and FFAs on lipotoxicity hallmarks, also repairing most of the alterations of the cellular lipidome, including those of the chain length and number of double bonds of acyl residues esterified to TG and PL classes. These findings and their bioinformatics interpretation suggest a role for the earliest acyl elongase and desaturase steps of FA metabolism in this repairing effect of MLT; biochemistry studies validated such interpretation identifying a specific role for SCD1 activity. This lipidomics study shed light on the cytoprotective mechanism of MLT in Cd and FFA-induced hepatocyte lipotoxicity, highlighting a repairing effect of this molecule on the cellular lipidome, which may hold therapeutic potential in fatty liver diseases.

{"title":"Melatonin Repairs the Lipidome of Human Hepatocytes Exposed to Cd and Free Fatty Acid-Induced Lipotoxicity","authors":"Anna Migni,&nbsp;Desirée Bartolini,&nbsp;Giada Marcantonini,&nbsp;Roccaldo Sardella,&nbsp;Mario Rende,&nbsp;Alessia Tognoloni,&nbsp;Maria Rachele Ceccarini,&nbsp;Francesco Galli","doi":"10.1111/jpi.70047","DOIUrl":"https://doi.org/10.1111/jpi.70047","url":null,"abstract":"<p>Hepatocyte lipotoxicity is central to the aetiology of nonalcoholic fatty liver disease (NAFLD), a leading cause of liver failure and transplantation worldwide. Long-lasting toxic pollutants have increasingly been considered as environmental risk factors of NAFLD. These include cadmium (Cd), a metal that synergizes with other cellular toxicants and metabolic stimuli to induce fat build-up and lipotoxicity. Recent studies demonstrated that melatonin (MLT) holds great potential as repairing agent in this form of hepatocyte lipotoxicity. In this study, the molecular hints of this MLT effect were investigated by lipidomics analysis in undifferentiated HepaRG cells, a human pre-hepatocyte cell line, exposed to Cd toxicity either alone or combined with prototypical free fatty acids (FFA), namely the saturated species palmitic acid and the monounsaturated oleic acid (OA and PA, respectively), to simulate the cellular lipotoxicity conditions of fatty liver disease. Cd exposure synergized with FFAs to induce cellular steatosis, and PA produced higher levels of lipotoxicity compared to OA by leading to increased levels of H<sub>2</sub>O<sub>2</sub> production and apoptotic death. These effects were associated with changes of the cellular lipidome, which approximate those of NAFLD liver, with differentially expressed lipids in different classes that included triacylglycerols (TG), di- and mono-acylglycerols, phospholipids (PL), sphingolipids, acylcarnitines and FA; characteristic differences were observed in all these classes comparing the combinations of Cd exposure with PA or OA treatments. MLT significantly reduced the effects of either individual or combinatorial treatments of Cd and FFAs on lipotoxicity hallmarks, also repairing most of the alterations of the cellular lipidome, including those of the chain length and number of double bonds of acyl residues esterified to TG and PL classes. These findings and their bioinformatics interpretation suggest a role for the earliest acyl elongase and desaturase steps of FA metabolism in this repairing effect of MLT; biochemistry studies validated such interpretation identifying a specific role for SCD1 activity. This lipidomics study shed light on the cytoprotective mechanism of MLT in Cd and FFA-induced hepatocyte lipotoxicity, highlighting a repairing effect of this molecule on the cellular lipidome, which may hold therapeutic potential in fatty liver diseases.</p>","PeriodicalId":198,"journal":{"name":"Journal of Pineal Research","volume":"77 3","pages":""},"PeriodicalIF":8.3,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jpi.70047","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143787168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of a COMT Gene Involved in the Biosynthesis of Melatonin Which Mediates Resistance to Citrus Canker
IF 8.3 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-04-02 DOI: 10.1111/jpi.70043
Kun Yang, Wenqing Xu, Huanyu Cai, Xiaomei Tang, Xiaoyan An, Chunyang He, Huailong Teng, Qiang Xu, Yuantao Xu

Citrus canker, caused by Xanthomonas citri subsp citri (Xcc), represents a severe threat to the citrus industry. The conventional control measures for citrus canker primarily rely on chemical bactericide. However, overuse of bactericide will cause environmental and food security concerns. To address this problem, efforts are being made to develop environmentally friendly bio-bactericide alternatives. In this study, we identified a caffeic acid O-methyltransferase gene, AbCOMT1, from Atalantia buxifolia, a Citrus-related species exhibiting high resistance to citrus canker. AbCOMT1 encodes a key enzyme involved in melatonin biosynthesis, and its overexpression in sweet orange significantly enhances resistance to citrus canker. We found elevated melatonin levels in the AbCOMT1 overexpressing sweet orange lines and demonstrated that the AbCOMT1 overexpression not only directly inhibited Xcc proliferation but also activated citrus immune responses. To further improve the inhibitory efficacy of melatonin, we tested several melatonin derivatives, achieving a tenfold increase in inhibitory activity. Notably, the melatonin derivative MT-3 exhibited outstanding efficacy in controlling citrus canker under field conditions. Our results revealed AbCOMT1 as a promising resistance gene and identified the highly efficient melatonin derivatives for citrus canker disease control.

{"title":"Identification of a COMT Gene Involved in the Biosynthesis of Melatonin Which Mediates Resistance to Citrus Canker","authors":"Kun Yang,&nbsp;Wenqing Xu,&nbsp;Huanyu Cai,&nbsp;Xiaomei Tang,&nbsp;Xiaoyan An,&nbsp;Chunyang He,&nbsp;Huailong Teng,&nbsp;Qiang Xu,&nbsp;Yuantao Xu","doi":"10.1111/jpi.70043","DOIUrl":"https://doi.org/10.1111/jpi.70043","url":null,"abstract":"<div>\u0000 \u0000 <p>Citrus canker, caused by <i>Xanthomonas citri</i> subsp <i>citri</i> (<i>Xcc</i>), represents a severe threat to the citrus industry. The conventional control measures for citrus canker primarily rely on chemical bactericide. However, overuse of bactericide will cause environmental and food security concerns. To address this problem, efforts are being made to develop environmentally friendly bio-bactericide alternatives. In this study, we identified a caffeic acid O-methyltransferase gene, <i>AbCOMT1</i>, from <i>Atalantia buxifolia</i>, a <i>Citrus</i>-related species exhibiting high resistance to citrus canker. <i>AbCOMT1</i> encodes a key enzyme involved in melatonin biosynthesis, and its overexpression in sweet orange significantly enhances resistance to citrus canker. We found elevated melatonin levels in the <i>AbCOMT1</i> overexpressing sweet orange lines and demonstrated that the <i>AbCOMT1</i> overexpression not only directly inhibited <i>Xcc</i> proliferation but also activated citrus immune responses. To further improve the inhibitory efficacy of melatonin, we tested several melatonin derivatives, achieving a tenfold increase in inhibitory activity. Notably, the melatonin derivative MT-3 exhibited outstanding efficacy in controlling citrus canker under field conditions. Our results revealed <i>AbCOMT1</i> as a promising resistance gene and identified the highly efficient melatonin derivatives for citrus canker disease control.</p></div>","PeriodicalId":198,"journal":{"name":"Journal of Pineal Research","volume":"77 3","pages":""},"PeriodicalIF":8.3,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143749450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Human Pinealectomy Syndrome and the Impact of Melatonin Replacement Therapy: 1-Cardiovascular Function
IF 8.3 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-04-02 DOI: 10.1111/jpi.70045
Claudia Cosentino, Fernanda Gaspar do Amaral, Luciana Aparecida Campos, Fernanda Gentil, Osmar Pinto Neto, Andréa Maria Cappellano, Nasjla Saba da Silva, Ovidiu Constantin Baltatu, José Cipolla-Neto

The purpose of this investigational study was to assess the cardiovascular effects of melatonin replacement therapy in pinealectomized patients. This was a prospective open-label, single-arm proof-of-concept study The study comprised 11 patients aged 16.7 ± 1.7 years, who had undergone pinealectomy, experienced no tumor recurrence, and exhibited undetectable salivary melatonin levels. A 6-month melatonin regimen (0.3 mg daily) was administered. Ambulatory blood pressure monitoring was conducted at baseline, 3-month, and 6-month intervals. First of all, no hypertension was observed in pinealectomized patients. Over the course of the study, diastolic blood pressure progressively decreased, reaching statistical significance at 6 months. Pulse pressure exhibited a gradual increase, reaching statistical significance after 6 months. Short-term blood pressure variability increased significantly for both systolic and diastolic pressures. Morning systolic and diastolic blood pressure levels were significantly decreased by melatonin replacement therapy. Melatonin had no effect on the average heart rate or its variability. Melatonin-deficient pinealectomized patients were normotensive. Melatonin replacement in these patients led to reduced diastolic pressure, increased pulse pressure, and enhanced short-term blood pressure variability. These results are consistent with improved cardiovascular health. Furthermore, melatonin's temporal specificity suggests that it might enhance nighttime recovery, heightening reactivity during wakefulness. While melatonin is used as a dietary supplement for similar effects, caution is advised, and further research is needed to optimize its use in various health and disease contexts. Further, considering the study's limitations, more extensive research would strengthen these findings.

{"title":"Human Pinealectomy Syndrome and the Impact of Melatonin Replacement Therapy: 1-Cardiovascular Function","authors":"Claudia Cosentino,&nbsp;Fernanda Gaspar do Amaral,&nbsp;Luciana Aparecida Campos,&nbsp;Fernanda Gentil,&nbsp;Osmar Pinto Neto,&nbsp;Andréa Maria Cappellano,&nbsp;Nasjla Saba da Silva,&nbsp;Ovidiu Constantin Baltatu,&nbsp;José Cipolla-Neto","doi":"10.1111/jpi.70045","DOIUrl":"https://doi.org/10.1111/jpi.70045","url":null,"abstract":"<div>\u0000 \u0000 <p>The purpose of this investigational study was to assess the cardiovascular effects of melatonin replacement therapy in pinealectomized patients. This was a prospective open-label, single-arm proof-of-concept study The study comprised 11 patients aged 16.7 ± 1.7 years, who had undergone pinealectomy, experienced no tumor recurrence, and exhibited undetectable salivary melatonin levels. A 6-month melatonin regimen (0.3 mg daily) was administered. Ambulatory blood pressure monitoring was conducted at baseline, 3-month, and 6-month intervals. First of all, no hypertension was observed in pinealectomized patients. Over the course of the study, diastolic blood pressure progressively decreased, reaching statistical significance at 6 months. Pulse pressure exhibited a gradual increase, reaching statistical significance after 6 months. Short-term blood pressure variability increased significantly for both systolic and diastolic pressures. Morning systolic and diastolic blood pressure levels were significantly decreased by melatonin replacement therapy. Melatonin had no effect on the average heart rate or its variability. Melatonin-deficient pinealectomized patients were normotensive. Melatonin replacement in these patients led to reduced diastolic pressure, increased pulse pressure, and enhanced short-term blood pressure variability. These results are consistent with improved cardiovascular health. Furthermore, melatonin's temporal specificity suggests that it might enhance nighttime recovery, heightening reactivity during wakefulness. While melatonin is used as a dietary supplement for similar effects, caution is advised, and further research is needed to optimize its use in various health and disease contexts. Further, considering the study's limitations, more extensive research would strengthen these findings.</p></div>","PeriodicalId":198,"journal":{"name":"Journal of Pineal Research","volume":"77 3","pages":""},"PeriodicalIF":8.3,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143749449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From Pineal to Biological Rhythms Through Melatonin
IF 8.3 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-03-28 DOI: 10.1111/jpi.70044
Horst-Werner Korf, Gianluca Tosini
{"title":"From Pineal to Biological Rhythms Through Melatonin","authors":"Horst-Werner Korf,&nbsp;Gianluca Tosini","doi":"10.1111/jpi.70044","DOIUrl":"https://doi.org/10.1111/jpi.70044","url":null,"abstract":"","PeriodicalId":198,"journal":{"name":"Journal of Pineal Research","volume":"77 2","pages":""},"PeriodicalIF":8.3,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143717027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Orphan GPR50 Restrains Neurite Outgrowth and Cell Migration by Activating the G12/13 Protein-RhoA Pathway in Neural Progenitor Cells and Tanycytes
IF 8.3 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-03-17 DOI: 10.1111/jpi.70041
Raise Ahmad, Marine Luka, Anne-Sophie Journe, Sarah Gallet, Alan Hegron, Marcio Do Cruzeiro, Mark J. Millan, Philippe Delagrange, Bernard Masri, Julie Dam, Vincent Prevot, Ralf Jockers

Human genetic variants of the orphan G protein-coupled receptor GPR50 are suggested risk factors for neuropsychiatric disorders. However, the function of GPR50 in the central nervous system (CNS) and its link to CNS disorders remain poorly defined. Here, we generated GPR50 knockout (GPR50-KO) mice and show that the absence of GPR50 increases neurite outgrowth, cell motility and migration of isolated neural progenitor cells (NPCs) and hypothalamic radial glial cells (tanycytes). These observations were phenocopied in NPCs and tanycytes from wild-type mice treated with neutralizing antibodies the against the prototypical neurite growth inhibitor Nogo-A. Treatment of NPCs and tanycytes from GPR50-KO cells with neutralizing antibodies had no further, additive, effect. Inhibition of neurite growth by GPR50 occurs through activation of the G12/13 protein-RhoA pathway in a manner similar to, but independent of Nogo-A and its receptors. Collectively, we show that GPR50 acts as an inhibitor of neurite growth and cell migration in the brain by activating the G12/13 protein-RhoA pathway.

{"title":"Orphan GPR50 Restrains Neurite Outgrowth and Cell Migration by Activating the G12/13 Protein-RhoA Pathway in Neural Progenitor Cells and Tanycytes","authors":"Raise Ahmad,&nbsp;Marine Luka,&nbsp;Anne-Sophie Journe,&nbsp;Sarah Gallet,&nbsp;Alan Hegron,&nbsp;Marcio Do Cruzeiro,&nbsp;Mark J. Millan,&nbsp;Philippe Delagrange,&nbsp;Bernard Masri,&nbsp;Julie Dam,&nbsp;Vincent Prevot,&nbsp;Ralf Jockers","doi":"10.1111/jpi.70041","DOIUrl":"https://doi.org/10.1111/jpi.70041","url":null,"abstract":"<p>Human genetic variants of the orphan G protein-coupled receptor GPR50 are suggested risk factors for neuropsychiatric disorders. However, the function of GPR50 in the central nervous system (CNS) and its link to CNS disorders remain poorly defined. Here, we generated GPR50 knockout (GPR50-KO) mice and show that the absence of GPR50 increases neurite outgrowth, cell motility and migration of isolated neural progenitor cells (NPCs) and hypothalamic radial glial cells (tanycytes). These observations were phenocopied in NPCs and tanycytes from wild-type mice treated with neutralizing antibodies the against the prototypical neurite growth inhibitor Nogo-A. Treatment of NPCs and tanycytes from GPR50-KO cells with neutralizing antibodies had no further, additive, effect. Inhibition of neurite growth by GPR50 occurs through activation of the G<sub>12/13</sub> protein-RhoA pathway in a manner similar to, but independent of Nogo-A and its receptors. Collectively, we show that GPR50 acts as an inhibitor of neurite growth and cell migration in the brain by activating the G<sub>12/13</sub> protein-RhoA pathway.</p>","PeriodicalId":198,"journal":{"name":"Journal of Pineal Research","volume":"77 2","pages":""},"PeriodicalIF":8.3,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jpi.70041","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143632680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sex-Specific Methylomic and Transcriptomic Responses of the Avian Pineal Gland to Unpredictable Illumination Patterns
IF 8.3 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-03-17 DOI: 10.1111/jpi.70040
Fábio Pértille, Tejaswi Badam, Nina Mitheiss, Pia Løtvedt, Emmanouil Tsakoumis, Mika Gustafsson, Luiz Lehmann Coutinho, Per Jensen, Carlos Guerrero-Bosagna

In the production environment of chickens, exposure to unpredictable light patterns is a common painless stressor, widely used to influence growth rate and egg production efficiency. The pineal gland, a key regulator of circadian rhythms through melatonin secretion, responds to environmental light cues, and its function is modulated by epigenetic mechanisms. In this study, we investigated how the pineal gland methylome and transcriptome (including micro-RNAs) interact to respond to a rearing exposure to unpredictable illumination patterns, with a particular focus on sex differences. We conducted an integrative multi-omic analysis—including methylomic (MeDIP-seq), transcriptomic (RNA-seq), and miRNA expression profiling—on the pineal gland of Hy-Line White chickens (n = 34, 18 females, 16 males) exposed to either a standard 12:12 light–dark cycle (control) or a randomized, unpredictable light schedule from Days 3 to 24 post-hatch. Our findings reveal that unpredictable light exposure alters the pineal gland methylome and transcriptome in a sex-specific manner. However, while transcriptomic differences between sexes increased due to the stress, methylomic differences decreased, particularly on the Z chromosome. These changes were driven by females (the heterogametic sex in birds), which became more male-like in their pineal methylome after exposure to the illumination stress, leading to reduced epigenetic sexual dimorphism while maintaining differences at the gene expression level. Further, we implemented a fixed sex effect model as a biological proof of concept, identifying a network of 12 key core genes interacting with 102 other genes, all linked to circadian regulation and stress adaptation. This network of genes comprises a core regulatory framework for circadian response. Additionally, tissue-specific expression analysis and cell-type specific expression analysis revealed enrichment in brain regions critical for circadian function, including neuronal populations involved in circadian regulation and the hypothalamic–pituitary–thyroid axis. Together, these findings provide strong evidence of sex-specific epigenetic transcriptomic responses of the pineal gland upon illumination stress and offer valuable insights into the interplay of different omic levels in relation to circadian response.

{"title":"Sex-Specific Methylomic and Transcriptomic Responses of the Avian Pineal Gland to Unpredictable Illumination Patterns","authors":"Fábio Pértille,&nbsp;Tejaswi Badam,&nbsp;Nina Mitheiss,&nbsp;Pia Løtvedt,&nbsp;Emmanouil Tsakoumis,&nbsp;Mika Gustafsson,&nbsp;Luiz Lehmann Coutinho,&nbsp;Per Jensen,&nbsp;Carlos Guerrero-Bosagna","doi":"10.1111/jpi.70040","DOIUrl":"https://doi.org/10.1111/jpi.70040","url":null,"abstract":"<p>In the production environment of chickens, exposure to unpredictable light patterns is a common painless stressor, widely used to influence growth rate and egg production efficiency. The pineal gland, a key regulator of circadian rhythms through melatonin secretion, responds to environmental light cues, and its function is modulated by epigenetic mechanisms. In this study, we investigated how the pineal gland methylome and transcriptome (including micro-RNAs) interact to respond to a rearing exposure to unpredictable illumination patterns, with a particular focus on sex differences. We conducted an integrative multi-omic analysis—including methylomic (MeDIP-seq), transcriptomic (RNA-seq), and miRNA expression profiling—on the pineal gland of Hy-Line White chickens (<i>n</i> = 34, 18 females, 16 males) exposed to either a standard 12:12 light–dark cycle (control) or a randomized, unpredictable light schedule from Days 3 to 24 post-hatch. Our findings reveal that unpredictable light exposure alters the pineal gland methylome and transcriptome in a sex-specific manner. However, while transcriptomic differences between sexes increased due to the stress, methylomic differences decreased, particularly on the Z chromosome. These changes were driven by females (the heterogametic sex in birds), which became more male-like in their pineal methylome after exposure to the illumination stress, leading to reduced epigenetic sexual dimorphism while maintaining differences at the gene expression level. Further, we implemented a fixed sex effect model as a biological proof of concept, identifying a network of 12 key core genes interacting with 102 other genes, all linked to circadian regulation and stress adaptation. This network of genes comprises a core regulatory framework for circadian response. Additionally, tissue-specific expression analysis and cell-type specific expression analysis revealed enrichment in brain regions critical for circadian function, including neuronal populations involved in circadian regulation and the hypothalamic–pituitary–thyroid axis. Together, these findings provide strong evidence of sex-specific epigenetic transcriptomic responses of the pineal gland upon illumination stress and offer valuable insights into the interplay of different omic levels in relation to circadian response.</p>","PeriodicalId":198,"journal":{"name":"Journal of Pineal Research","volume":"77 2","pages":""},"PeriodicalIF":8.3,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jpi.70040","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143632915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Melatonin Increased Autophagy Level to Facilitate Osteogenesis of Inflamed PDLSCs Through TMEM110 Signaling Pathways
IF 8.3 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-03-10 DOI: 10.1111/jpi.70039
Xinyue Xu, Zhaojia Zhang, Wen Tian, Meng Cao, Zhen Wang, Fei Li, Tian Gao, Mengjuan Cheng, Yunlong Xia, Jinlong Shao, Chunxu Hai

Periodontal ligament stem cells (PDLSCs) bring new hope to patients with poor periodontium recovery and impaired regeneration. However, the complex inflammatory microenvironment continually inhibits stem cell function and hinders stem cell therapy effectiveness. Melatonin is a naturally occurring neurohormone that participates in the regulation of a large spectrum of biological functions. We investigated the effect of melatonin on periodontium regeneration both in vitro and in vivo. The results showed that melatonin promoted periodontitis recovery and enhanced the osteogenesis of inflamed PDLSCs (Inf-PDLSCs) depending on concentrations. Further mechanistic exploration indicated that autophagy activation played a significant role in enhancing the osteogenic differentiation of Inf-PDLSCs after melatonin treatment. Additionally, melatonin-induced upregulation of TEME110 participated in the initiation of autophagy activation and enhancement of osteogenesis in Inf-PDLSCs. Collectively, the results of our study provide evidence that melatonin-mediated osteogenesis of Inf-PDLSCs is important for periodontal tissue regeneration. Moreover, melatonin as a therapeutic drug for periodontitis treatment deserves further investigation.

{"title":"Melatonin Increased Autophagy Level to Facilitate Osteogenesis of Inflamed PDLSCs Through TMEM110 Signaling Pathways","authors":"Xinyue Xu,&nbsp;Zhaojia Zhang,&nbsp;Wen Tian,&nbsp;Meng Cao,&nbsp;Zhen Wang,&nbsp;Fei Li,&nbsp;Tian Gao,&nbsp;Mengjuan Cheng,&nbsp;Yunlong Xia,&nbsp;Jinlong Shao,&nbsp;Chunxu Hai","doi":"10.1111/jpi.70039","DOIUrl":"https://doi.org/10.1111/jpi.70039","url":null,"abstract":"<p>Periodontal ligament stem cells (PDLSCs) bring new hope to patients with poor periodontium recovery and impaired regeneration. However, the complex inflammatory microenvironment continually inhibits stem cell function and hinders stem cell therapy effectiveness. Melatonin is a naturally occurring neurohormone that participates in the regulation of a large spectrum of biological functions. We investigated the effect of melatonin on periodontium regeneration both in vitro and in vivo. The results showed that melatonin promoted periodontitis recovery and enhanced the osteogenesis of inflamed PDLSCs (Inf-PDLSCs) depending on concentrations. Further mechanistic exploration indicated that autophagy activation played a significant role in enhancing the osteogenic differentiation of Inf-PDLSCs after melatonin treatment. Additionally, melatonin-induced upregulation of TEME110 participated in the initiation of autophagy activation and enhancement of osteogenesis in Inf-PDLSCs. Collectively, the results of our study provide evidence that melatonin-mediated osteogenesis of Inf-PDLSCs is important for periodontal tissue regeneration. Moreover, melatonin as a therapeutic drug for periodontitis treatment deserves further investigation.</p>","PeriodicalId":198,"journal":{"name":"Journal of Pineal Research","volume":"77 2","pages":""},"PeriodicalIF":8.3,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jpi.70039","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143595046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Pineal Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1