Vito F. Pecile, Michael Leskowschek, Norbert Modsching, Valentin J. Wittwer, Thomas Südmeyer, Oliver H. Heckl
{"title":"Record-high power, low phase noise synchronously-pumped optical parametric oscillator tunable from 2.7 to 4.7 μm","authors":"Vito F. Pecile, Michael Leskowschek, Norbert Modsching, Valentin J. Wittwer, Thomas Südmeyer, Oliver H. Heckl","doi":"10.1063/5.0233247","DOIUrl":null,"url":null,"abstract":"Within the domain of optical frequency comb systems operating in the mid-infrared region, extensive exploration has been undertaken regarding critical parameters, such as stabilization, coherence, or spectral tunability. Despite this, certain essential parameters remain inadequately addressed, particularly concerning light source stability at high average powers. This study explores stability limitations of an optical parametric oscillator system when scaling to several watts of average power of the idler. Notably, the highest average power reported in the 3–5 μm region, reaching 10.3 W for the idler output at 3.1 μm, is achieved. Additionally, we analyze the phase noise and beam quality of both idler and signal beams and identify the onset of higher order modes as limiting for stability at high-power operation. Finally, we estimate the free-running optical linewidth of our idler beam to be ∼300 kHz, undermining the high passive temporal stability of our source. These findings represent a significant advancement toward the realization of highly stable high-power optical frequency combs in the mid-infrared region, thereby facilitating applications previously constrained by light source average powers and quality limitations.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"45 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0233247","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Within the domain of optical frequency comb systems operating in the mid-infrared region, extensive exploration has been undertaken regarding critical parameters, such as stabilization, coherence, or spectral tunability. Despite this, certain essential parameters remain inadequately addressed, particularly concerning light source stability at high average powers. This study explores stability limitations of an optical parametric oscillator system when scaling to several watts of average power of the idler. Notably, the highest average power reported in the 3–5 μm region, reaching 10.3 W for the idler output at 3.1 μm, is achieved. Additionally, we analyze the phase noise and beam quality of both idler and signal beams and identify the onset of higher order modes as limiting for stability at high-power operation. Finally, we estimate the free-running optical linewidth of our idler beam to be ∼300 kHz, undermining the high passive temporal stability of our source. These findings represent a significant advancement toward the realization of highly stable high-power optical frequency combs in the mid-infrared region, thereby facilitating applications previously constrained by light source average powers and quality limitations.
期刊介绍:
Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology.
In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics.
APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field.
Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.