Yan Li, Jianlei Wang, Congcong Shen, Guiyao Zhou, Manuel Delgado-Baquerizo, Yuan Ge
{"title":"Microbial Diversity Losses Constrain the Capacity of Soils to Mitigate Climate Change","authors":"Yan Li, Jianlei Wang, Congcong Shen, Guiyao Zhou, Manuel Delgado-Baquerizo, Yuan Ge","doi":"10.1111/gcb.17601","DOIUrl":null,"url":null,"abstract":"Soil microbes may adapt to climate warming, potentially reducing the warming-induced increase in microbial carbon emissions such as carbon dioxide, and thereby helping to mitigate climate change. Yet, soil microbes are subjected to various global change stresses (e.g., warming, drought, flooding, and land-use changes), altering their biodiversity, which challenges microbial adaptation to climate change. Here, we created microbial diversity gradients in microcosms at two different temperatures using soils from a 2000-km field survey. We found that reduced microbial diversity weakens the thermal adaptation of soil microbial respiration and can further enhance the microbial respiratory temperature sensitivity over time. Our analyses further revealed that the negative impact of microbial diversity losses is linked to the decline of keystone microbial taxa, which can adapt to temperature changes and are crucial for the community's ability to compensate for the temperature-driven effects on soil respiration in the long term. Taken together, our study provides new insights into the key role of microbial diversity in driving the thermal response of soil heterotrophic respiration, suggesting that any global change-driven shifts in microbial diversity can have critical consequences for the future of carbon stocks.","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"7 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/gcb.17601","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0
Abstract
Soil microbes may adapt to climate warming, potentially reducing the warming-induced increase in microbial carbon emissions such as carbon dioxide, and thereby helping to mitigate climate change. Yet, soil microbes are subjected to various global change stresses (e.g., warming, drought, flooding, and land-use changes), altering their biodiversity, which challenges microbial adaptation to climate change. Here, we created microbial diversity gradients in microcosms at two different temperatures using soils from a 2000-km field survey. We found that reduced microbial diversity weakens the thermal adaptation of soil microbial respiration and can further enhance the microbial respiratory temperature sensitivity over time. Our analyses further revealed that the negative impact of microbial diversity losses is linked to the decline of keystone microbial taxa, which can adapt to temperature changes and are crucial for the community's ability to compensate for the temperature-driven effects on soil respiration in the long term. Taken together, our study provides new insights into the key role of microbial diversity in driving the thermal response of soil heterotrophic respiration, suggesting that any global change-driven shifts in microbial diversity can have critical consequences for the future of carbon stocks.
期刊介绍:
Global Change Biology is an environmental change journal committed to shaping the future and addressing the world's most pressing challenges, including sustainability, climate change, environmental protection, food and water safety, and global health.
Dedicated to fostering a profound understanding of the impacts of global change on biological systems and offering innovative solutions, the journal publishes a diverse range of content, including primary research articles, technical advances, research reviews, reports, opinions, perspectives, commentaries, and letters. Starting with the 2024 volume, Global Change Biology will transition to an online-only format, enhancing accessibility and contributing to the evolution of scholarly communication.