{"title":"Suppressing Exciton–Vibration Coupling via Intramolecular Noncovalent Interactions for Low-Energy-Loss Organic Solar Cells","authors":"Xiaobin Gu, Yanan Wei, Rui Zeng, Jikai Lv, Yuqi Hou, Na Yu, Senke Tan, Zaiyu Wang, Congqi Li, Zheng Tang, Qian Peng, Feng Liu, Yunhao Cai, Xin Zhang, Hui Huang","doi":"10.1002/anie.202418926","DOIUrl":null,"url":null,"abstract":"Minimizing energy loss is crucial for breaking through the efficiency bottleneck of organic solar cells (OSCs). The main mechanism of energy loss can be attributed to non-radiative recombination energy loss (ΔEnr) that occurs due to exciton–vibration coupling. To tackle this challenge, tuning intramolecular noncovalent interactions is strategically utilized to tailor novel fused ring electron acceptors (FREAs). Upon comprehensive analysis of both theoretical and experimental results, this approach can effectively enhance molecular rigidity, suppress structural relaxation, reduce exciton reorganization energy, and weakens exciton−vibration coupling strength. Consequently, the binary OSC device based on Y-SeSe, which features dual strong intramolecular Se···O noncovalent interactions, achieves an outstanding power conversion efficiency (PCE) of 19.49%, accompanied by an extremely small ΔEnr of 0.184 eV, much lower than those of Y-SS and Y-SSe based devices with weaker intramolecular noncovalent interactions. These achievements not only set an efficiency record for selenium-containing OSCs, but also mark the lowest reported ΔEnr value among high-performance binary devices. Furthermore, the ternary blend device showcases a remarkable PCE of 20.51%, one of the highest PCEs for single-junction OSCs. This work demonstrates the effectiveness of intramolecular noncovalent interactions in suppressing exciton–vibration coupling, thereby achieving low-energy-loss and high-efficiency OSCs.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"12 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202418926","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Minimizing energy loss is crucial for breaking through the efficiency bottleneck of organic solar cells (OSCs). The main mechanism of energy loss can be attributed to non-radiative recombination energy loss (ΔEnr) that occurs due to exciton–vibration coupling. To tackle this challenge, tuning intramolecular noncovalent interactions is strategically utilized to tailor novel fused ring electron acceptors (FREAs). Upon comprehensive analysis of both theoretical and experimental results, this approach can effectively enhance molecular rigidity, suppress structural relaxation, reduce exciton reorganization energy, and weakens exciton−vibration coupling strength. Consequently, the binary OSC device based on Y-SeSe, which features dual strong intramolecular Se···O noncovalent interactions, achieves an outstanding power conversion efficiency (PCE) of 19.49%, accompanied by an extremely small ΔEnr of 0.184 eV, much lower than those of Y-SS and Y-SSe based devices with weaker intramolecular noncovalent interactions. These achievements not only set an efficiency record for selenium-containing OSCs, but also mark the lowest reported ΔEnr value among high-performance binary devices. Furthermore, the ternary blend device showcases a remarkable PCE of 20.51%, one of the highest PCEs for single-junction OSCs. This work demonstrates the effectiveness of intramolecular noncovalent interactions in suppressing exciton–vibration coupling, thereby achieving low-energy-loss and high-efficiency OSCs.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.