Xu Zhou, Ming Jiang, Yuhao Duan, Zhenghao Jia, Cheng Yuan, Kai Feng, Qiang Fu, Liang Zhang, Xiaofei Yang, Xianfeng Li
{"title":"Multi-Electron Transfer Halide Cathode Materials Based on Intercalation-Conversion Reaction Towards All-Solid-State Lithium Batteries","authors":"Xu Zhou, Ming Jiang, Yuhao Duan, Zhenghao Jia, Cheng Yuan, Kai Feng, Qiang Fu, Liang Zhang, Xiaofei Yang, Xianfeng Li","doi":"10.1002/anie.202416635","DOIUrl":null,"url":null,"abstract":"All-solid-state lithium batteries (ASSLBs) with non-flammable solid-state electrolytes offer high energy density and enhanced safety. However, their energy densities are greatly limited by low-capacity and low-ionic-conductivity oxide cathode materials, typically relying on the intercalation-deintercalation mechanism with a catholyte content of 15~30 wt.%. Here we introduce the LixFeXx+2 (X=Cl, Br) families as high-capacity and high-ionic-conductivity alternatives, operating via a 3 mol e- transfer intercalation-conversion coupling reaction. Notably, the catholyte-free ASSLBs using 95 wt.% LiFeCl3 active material delivers a remarkable capacity of 446 mAh g-1 and a high energy density of 912 Wh kg-1, which surpasses most oxide cathode materials. Of particular interest is the formation of amorphous Fe during the conversion process. The amorphous Fe exhibits high activity, catalyzing the conversion of LiX back to LixFeXx+2, which proves instrumental in realizing reversible intercalation-conversion reactions. These halide cathode materials represent a significant advancement towards high-energy-density ASSLBs.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"46 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202416635","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
All-solid-state lithium batteries (ASSLBs) with non-flammable solid-state electrolytes offer high energy density and enhanced safety. However, their energy densities are greatly limited by low-capacity and low-ionic-conductivity oxide cathode materials, typically relying on the intercalation-deintercalation mechanism with a catholyte content of 15~30 wt.%. Here we introduce the LixFeXx+2 (X=Cl, Br) families as high-capacity and high-ionic-conductivity alternatives, operating via a 3 mol e- transfer intercalation-conversion coupling reaction. Notably, the catholyte-free ASSLBs using 95 wt.% LiFeCl3 active material delivers a remarkable capacity of 446 mAh g-1 and a high energy density of 912 Wh kg-1, which surpasses most oxide cathode materials. Of particular interest is the formation of amorphous Fe during the conversion process. The amorphous Fe exhibits high activity, catalyzing the conversion of LiX back to LixFeXx+2, which proves instrumental in realizing reversible intercalation-conversion reactions. These halide cathode materials represent a significant advancement towards high-energy-density ASSLBs.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.