{"title":"Engineered platelets as targeted protein degraders and application to breast cancer models","authors":"Yu Chen, Samira Pal, Wen Li, Fengyuan Liu, Sichen Yuan, Quanyin Hu","doi":"10.1038/s41587-024-02494-8","DOIUrl":null,"url":null,"abstract":"<p>Clinical application of chimeric molecules for targeted protein degradation has been limited by unfavorable drug-like properties and biosafety concerns arising from nonspecific biodistribution after systemic administration. Here we develop a method to engineer platelets for degradation of either intracellular or extracellular proteins of interest (POIs) in vivo by covalently labeling heat shock protein 90 (HSP90) in platelets with a POI ligand. The degrader platelets (DePLTs) target wound areas and undergo activation. Depending on the tethered POI ligand and transport mechanism of the prelabeled HSP90, activated DePLTs can mediate targeted protein degradation in the target cell through the ubiquitin–proteasome machinery or the lysosome. HSP90 packaged into platelet-derived microparticles uses the ubiquitin–proteasome system to degrade intracellular POIs, whereas released free HSP90 redirects extracellular POIs to lysosomal degradation. In postsurgical breast cancer mouse models, DePLTs engineered with corresponding POI ligands effectively degrade intracellular bromodomain-containing protein 4 or extracellular programmed cell death ligand 1, thereby suppressing cancer recurrence or metastasis.</p>","PeriodicalId":19084,"journal":{"name":"Nature biotechnology","volume":"12 1","pages":""},"PeriodicalIF":33.1000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41587-024-02494-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Clinical application of chimeric molecules for targeted protein degradation has been limited by unfavorable drug-like properties and biosafety concerns arising from nonspecific biodistribution after systemic administration. Here we develop a method to engineer platelets for degradation of either intracellular or extracellular proteins of interest (POIs) in vivo by covalently labeling heat shock protein 90 (HSP90) in platelets with a POI ligand. The degrader platelets (DePLTs) target wound areas and undergo activation. Depending on the tethered POI ligand and transport mechanism of the prelabeled HSP90, activated DePLTs can mediate targeted protein degradation in the target cell through the ubiquitin–proteasome machinery or the lysosome. HSP90 packaged into platelet-derived microparticles uses the ubiquitin–proteasome system to degrade intracellular POIs, whereas released free HSP90 redirects extracellular POIs to lysosomal degradation. In postsurgical breast cancer mouse models, DePLTs engineered with corresponding POI ligands effectively degrade intracellular bromodomain-containing protein 4 or extracellular programmed cell death ligand 1, thereby suppressing cancer recurrence or metastasis.
期刊介绍:
Nature Biotechnology is a monthly journal that focuses on the science and business of biotechnology. It covers a wide range of topics including technology/methodology advancements in the biological, biomedical, agricultural, and environmental sciences. The journal also explores the commercial, political, ethical, legal, and societal aspects of this research.
The journal serves researchers by providing peer-reviewed research papers in the field of biotechnology. It also serves the business community by delivering news about research developments. This approach ensures that both the scientific and business communities are well-informed and able to stay up-to-date on the latest advancements and opportunities in the field.
Some key areas of interest in which the journal actively seeks research papers include molecular engineering of nucleic acids and proteins, molecular therapy, large-scale biology, computational biology, regenerative medicine, imaging technology, analytical biotechnology, applied immunology, food and agricultural biotechnology, and environmental biotechnology.
In summary, Nature Biotechnology is a comprehensive journal that covers both the scientific and business aspects of biotechnology. It strives to provide researchers with valuable research papers and news while also delivering important scientific advancements to the business community.