Blocking adipocyte YY1 decouples thermogenesis from beneficial metabolism by promoting spermidine production

IF 6.2 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Diabetes Pub Date : 2024-12-02 DOI:10.2337/db24-0501
Chen Qiu, Yu Lu, Suyang Wu, Wenli Guo, Jiahao Ni, Jiyuan Song, Zichao Liu, Xiaoai Chang, Kai Wang, Peng Sun, Qian Zhang, Shufang Yang, Kai Li
{"title":"Blocking adipocyte YY1 decouples thermogenesis from beneficial metabolism by promoting spermidine production","authors":"Chen Qiu, Yu Lu, Suyang Wu, Wenli Guo, Jiahao Ni, Jiyuan Song, Zichao Liu, Xiaoai Chang, Kai Wang, Peng Sun, Qian Zhang, Shufang Yang, Kai Li","doi":"10.2337/db24-0501","DOIUrl":null,"url":null,"abstract":"The accumulation of mitochondria in thermogenic adipose tissue (i.e., brown and beige fat) increases energy expenditure, which can aid in alleviating obesity and metabolic disorders. However, recent studies have shown that knocking out key proteins required to maintain mitochondrial function inhibits the energy expenditure in thermogenic fat, and yet the knockout mice are unexpectedly protected from developing obesity or metabolic disorders when fed a high-fat diet (HFD). In the present study, non-biased sequencing-based screening revealed the importance of YY1 in the transcription of electron transport chain genes and the enhancement of mitochondrial function in thermogenic adipose tissue. Specifically, adipocyte YY1 null (YAKO) mice showed lower energy expenditure and were intolerant to cold stress. Interestingly, YAKO mice showed alleviation of HFD-induced metabolic disorders, which can be attributed to a suppression of adipose tissue inflammation. Metabolomic analysis revealed that blocking YY1 directed glucose metabolism toward lactate, enhanced the uptake of glutamine, and promoted the production of anti-inflammatory spermidine. Conversely, blocking spermidine production in YAKO mice reversed their resistance to HFD-induced disorders. Thus, although blocking adipocyte YY1 impairs the thermogenesis, it promotes spermidine production and alleviates adipose tissue inflammation, therefore leads to an uncoupling of adipose tissue energy expenditure from HFD-induced metabolic disorders.","PeriodicalId":11376,"journal":{"name":"Diabetes","volume":"82 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2337/db24-0501","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

The accumulation of mitochondria in thermogenic adipose tissue (i.e., brown and beige fat) increases energy expenditure, which can aid in alleviating obesity and metabolic disorders. However, recent studies have shown that knocking out key proteins required to maintain mitochondrial function inhibits the energy expenditure in thermogenic fat, and yet the knockout mice are unexpectedly protected from developing obesity or metabolic disorders when fed a high-fat diet (HFD). In the present study, non-biased sequencing-based screening revealed the importance of YY1 in the transcription of electron transport chain genes and the enhancement of mitochondrial function in thermogenic adipose tissue. Specifically, adipocyte YY1 null (YAKO) mice showed lower energy expenditure and were intolerant to cold stress. Interestingly, YAKO mice showed alleviation of HFD-induced metabolic disorders, which can be attributed to a suppression of adipose tissue inflammation. Metabolomic analysis revealed that blocking YY1 directed glucose metabolism toward lactate, enhanced the uptake of glutamine, and promoted the production of anti-inflammatory spermidine. Conversely, blocking spermidine production in YAKO mice reversed their resistance to HFD-induced disorders. Thus, although blocking adipocyte YY1 impairs the thermogenesis, it promotes spermidine production and alleviates adipose tissue inflammation, therefore leads to an uncoupling of adipose tissue energy expenditure from HFD-induced metabolic disorders.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
阻断脂肪细胞YY1通过促进亚精胺的产生使产热与有益的代谢分离
产热脂肪组织(即棕色和米色脂肪)中线粒体的积累增加了能量消耗,这有助于减轻肥胖和代谢紊乱。然而,最近的研究表明,敲除维持线粒体功能所需的关键蛋白质会抑制产热脂肪的能量消耗,然而,当喂食高脂肪饮食(HFD)时,敲除小鼠意外地免受肥胖或代谢紊乱的影响。在本研究中,基于非偏倚测序的筛选揭示了YY1在产热脂肪组织中电子传递链基因转录和线粒体功能增强中的重要性。具体来说,脂肪细胞YY1缺失(YAKO)小鼠表现出较低的能量消耗,对冷应激不耐受。有趣的是,YAKO小鼠表现出hfd诱导的代谢紊乱的缓解,这可以归因于脂肪组织炎症的抑制。代谢组学分析显示,阻断YY1可使葡萄糖代谢转向乳酸,增强谷氨酰胺的摄取,促进抗炎亚精胺的产生。相反,阻断YAKO小鼠亚精胺的产生逆转了它们对hfd诱导的疾病的抵抗力。因此,尽管阻断脂肪细胞YY1损害了产热作用,但它促进了亚精胺的产生,减轻了脂肪组织的炎症,从而导致脂肪组织能量消耗与hfd诱导的代谢紊乱脱钩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Diabetes
Diabetes 医学-内分泌学与代谢
CiteScore
12.50
自引率
2.60%
发文量
1968
审稿时长
1 months
期刊介绍: Diabetes is a scientific journal that publishes original research exploring the physiological and pathophysiological aspects of diabetes mellitus. We encourage submissions of manuscripts pertaining to laboratory, animal, or human research, covering a wide range of topics. Our primary focus is on investigative reports investigating various aspects such as the development and progression of diabetes, along with its associated complications. We also welcome studies delving into normal and pathological pancreatic islet function and intermediary metabolism, as well as exploring the mechanisms of drug and hormone action from a pharmacological perspective. Additionally, we encourage submissions that delve into the biochemical and molecular aspects of both normal and abnormal biological processes. However, it is important to note that we do not publish studies relating to diabetes education or the application of accepted therapeutic and diagnostic approaches to patients with diabetes mellitus. Our aim is to provide a platform for research that contributes to advancing our understanding of the underlying mechanisms and processes of diabetes.
期刊最新文献
Atf4 protects islet β-cell identity and function under acute glucose-induced stress but promotes β-cell failure in the presence of free fatty acid Deubiquitinating enzyme USP2 alleviates muscle atrophy by stabilizing PPARγ An alternatively translated isoform of PPARG proposes AF-1 domain inhibition as an insulin sensitization target Extracellular vesicle-associated miR-ERIA exerts the anti-angiogenic effect of macrophages in diabetic wound healing Homeobox C4 transcription factor promotes adipose tissue thermogenesis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1