Monika Schied, Hanna Pazniak, Florian Brette, Paolo Lacovig, Michael Paris, Florent Boucher, Silvano Lizzit, Vincent Mauchamp, Rosanna Larciprete
{"title":"Reactivity of Ti3C2Tx MXene with Atomic Hydrogen: Tuning of Surface Terminations by Halogen Removal and Reversible O to OH Conversion","authors":"Monika Schied, Hanna Pazniak, Florian Brette, Paolo Lacovig, Michael Paris, Florent Boucher, Silvano Lizzit, Vincent Mauchamp, Rosanna Larciprete","doi":"10.1021/acs.chemmater.4c02422","DOIUrl":null,"url":null,"abstract":"Two-dimensional transition metal carbides or nitrides, so-called MXenes, hold the prospect of a proactive emergence as innovative catalysts and device components owing to the specific qualities gained from the chemical species that functionalize the layers. Tuning the nature and the number of the surface terminations becomes the key factor for the effective use of MXenes in technology. This study explores the capability of H atoms to modify the surface composition of Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> flakes. While exposing the sample at room temperature to H atoms, the change of its surface chemical state is followed by synchrotron radiation X-ray photoelectron spectroscopy. It turns out that halogen terminations are progressively and substantially removed. In parallel, the O terminations are partially converted into OH groups, the O/OH ratio being possibly controlled by the OH–OH repulsion. The dramatic surface composition change leaves the valence state of the Ti atoms almost unchanged. Density functional theory simulations of the valence band spectra for different Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> model systems identify all spectral features and model the change of the electronic properties around the Fermi level. Heating the hydrogenated sample to 400 K removes the OH groups, leaving the MXene surface deprived of most of the pristine terminations, thus giving way to new, application-oriented functionalization.","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"74 1","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.chemmater.4c02422","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Two-dimensional transition metal carbides or nitrides, so-called MXenes, hold the prospect of a proactive emergence as innovative catalysts and device components owing to the specific qualities gained from the chemical species that functionalize the layers. Tuning the nature and the number of the surface terminations becomes the key factor for the effective use of MXenes in technology. This study explores the capability of H atoms to modify the surface composition of Ti3C2Tx flakes. While exposing the sample at room temperature to H atoms, the change of its surface chemical state is followed by synchrotron radiation X-ray photoelectron spectroscopy. It turns out that halogen terminations are progressively and substantially removed. In parallel, the O terminations are partially converted into OH groups, the O/OH ratio being possibly controlled by the OH–OH repulsion. The dramatic surface composition change leaves the valence state of the Ti atoms almost unchanged. Density functional theory simulations of the valence band spectra for different Ti3C2Tx model systems identify all spectral features and model the change of the electronic properties around the Fermi level. Heating the hydrogenated sample to 400 K removes the OH groups, leaving the MXene surface deprived of most of the pristine terminations, thus giving way to new, application-oriented functionalization.
期刊介绍:
The journal Chemistry of Materials focuses on publishing original research at the intersection of materials science and chemistry. The studies published in the journal involve chemistry as a prominent component and explore topics such as the design, synthesis, characterization, processing, understanding, and application of functional or potentially functional materials. The journal covers various areas of interest, including inorganic and organic solid-state chemistry, nanomaterials, biomaterials, thin films and polymers, and composite/hybrid materials. The journal particularly seeks papers that highlight the creation or development of innovative materials with novel optical, electrical, magnetic, catalytic, or mechanical properties. It is essential that manuscripts on these topics have a primary focus on the chemistry of materials and represent a significant advancement compared to prior research. Before external reviews are sought, submitted manuscripts undergo a review process by a minimum of two editors to ensure their appropriateness for the journal and the presence of sufficient evidence of a significant advance that will be of broad interest to the materials chemistry community.