The near-complete genome assembly of hexaploid wild oat reveals its genome evolution and divergence with cultivated oats

IF 15.8 1区 生物学 Q1 PLANT SCIENCES Nature Plants Pub Date : 2024-12-03 DOI:10.1038/s41477-024-01866-x
Qiang He, Wei Li, Yuqing Miao, Yu Wang, Ningkun Liu, Jianan Liu, Tao Li, Yao Xiao, Hongyu Zhang, Yaru Wang, Hanfei Liang, Yange Yun, Shuhui Wang, Qingbin Sun, Hongru Wang, Zhizhong Gong, Huilong Du
{"title":"The near-complete genome assembly of hexaploid wild oat reveals its genome evolution and divergence with cultivated oats","authors":"Qiang He, Wei Li, Yuqing Miao, Yu Wang, Ningkun Liu, Jianan Liu, Tao Li, Yao Xiao, Hongyu Zhang, Yaru Wang, Hanfei Liang, Yange Yun, Shuhui Wang, Qingbin Sun, Hongru Wang, Zhizhong Gong, Huilong Du","doi":"10.1038/s41477-024-01866-x","DOIUrl":null,"url":null,"abstract":"<p><i>Avena sterilis</i>, the ancestral species of cultivated oats, is a valuable genetic resource for oat improvement. Here we generated a near-complete 10.99 Gb <i>A. sterilis</i> genome and a high-quality 10.89 Gb cultivated oat genome. Genome evolution analysis revealed the centromeres dynamic and structural variations landscape associated with domestication between wild and cultivated oats. Population genetic analysis of 117 wild and cultivated oat accessions worldwide detected many candidate genes associated with important agronomic traits for oat domestication and improvement. Remarkably, a large fragment duplication from chromosomes 4A to 4D harbouring many agronomically important genes was detected during oat domestication and was fixed in almost all cultivated oats from around the world. The genes in the duplication region from 4A showed significantly higher expression levels and lower methylation levels than the orthologous genes located on 4D in <i>A. sterilis</i>. This study provides valuable resources for evolutionary and functional genomics and genetic improvement of oat.</p>","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"8 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Plants","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41477-024-01866-x","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Avena sterilis, the ancestral species of cultivated oats, is a valuable genetic resource for oat improvement. Here we generated a near-complete 10.99 Gb A. sterilis genome and a high-quality 10.89 Gb cultivated oat genome. Genome evolution analysis revealed the centromeres dynamic and structural variations landscape associated with domestication between wild and cultivated oats. Population genetic analysis of 117 wild and cultivated oat accessions worldwide detected many candidate genes associated with important agronomic traits for oat domestication and improvement. Remarkably, a large fragment duplication from chromosomes 4A to 4D harbouring many agronomically important genes was detected during oat domestication and was fixed in almost all cultivated oats from around the world. The genes in the duplication region from 4A showed significantly higher expression levels and lower methylation levels than the orthologous genes located on 4D in A. sterilis. This study provides valuable resources for evolutionary and functional genomics and genetic improvement of oat.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Plants
Nature Plants PLANT SCIENCES-
CiteScore
25.30
自引率
2.20%
发文量
196
期刊介绍: Nature Plants is an online-only, monthly journal publishing the best research on plants — from their evolution, development, metabolism and environmental interactions to their societal significance.
期刊最新文献
Plant microbiota feedbacks through dose-responsive expression of general non-self response genes The near-complete genome assembly of hexaploid wild oat reveals its genome evolution and divergence with cultivated oats Regulation and function of a polarly localized lignin barrier in the exodermis The vision for adapted crops and soils: how to prioritize investments to achieve sustainable nutrition for all Stomatal opening under high temperatures is controlled by the OST1-regulated TOT3–AHA1 module
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1