High-power and high-energy zinc ion cathodes through embedded CNTs current collectors in vanadium oxide

IF 5.6 3区 材料科学 Q1 ELECTROCHEMISTRY Electrochimica Acta Pub Date : 2025-02-01 DOI:10.1016/j.electacta.2024.145453
Carolina Ramos Capón , Juan J. Vilatela , Afshin Pendashteh
{"title":"High-power and high-energy zinc ion cathodes through embedded CNTs current collectors in vanadium oxide","authors":"Carolina Ramos Capón ,&nbsp;Juan J. Vilatela ,&nbsp;Afshin Pendashteh","doi":"10.1016/j.electacta.2024.145453","DOIUrl":null,"url":null,"abstract":"<div><div>Aqueous rechargeable zinc-ion batteries (ZIBs) represent a promising technology for increased adoption in various applications, especially for stationary energy storage purposes. Despite notable advancements in enhancing the capacity of electrode materials for ZIBs, the development of cathodes exhibiting high capacity at the electrode level, with application-relevant mass loadings and prolonged stability, remains challenging. Herein, we introduce composite electrodes consisting of vanadium oxide with an embedded conducting network of carbon nanotubes, reaching 96 wt.% of active material in the full electrode by eliminating binders and metallic foil. Embedding the CNT network results in flexible electrodes with a uniform distribution of active material, electrical conductivity of 3.5 × 10<sup>3</sup> S/m (e.g., 0.25 S/m out-of-plane) and high toughness. The resulting composite electrodes demonstrated a high capacity of 350 mAh/g at the electrode level, coupled with prolonged cycling performance both at low (e.g., 98 % retention over 240 at 0.1 A/g) and high current densities (e.g., 87 % over 1500 cycles at 5 A/g). The embedded conducting network within the electrode produces excellent high-rate properties up to 10 A/g (e.g., ∼170 mAh/g) due to the uniform distribution of active material and high internal electrical conductivity. Embedded CNT electrodes translate into a specific energy density of ∼ 290 Wh/kg at the electrode level, which is a 425 % increase compared to conventional ZIB cells with titanium or stainless-steel current collectors.</div></div>","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"512 ","pages":"Article 145453"},"PeriodicalIF":5.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001346862401689X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Aqueous rechargeable zinc-ion batteries (ZIBs) represent a promising technology for increased adoption in various applications, especially for stationary energy storage purposes. Despite notable advancements in enhancing the capacity of electrode materials for ZIBs, the development of cathodes exhibiting high capacity at the electrode level, with application-relevant mass loadings and prolonged stability, remains challenging. Herein, we introduce composite electrodes consisting of vanadium oxide with an embedded conducting network of carbon nanotubes, reaching 96 wt.% of active material in the full electrode by eliminating binders and metallic foil. Embedding the CNT network results in flexible electrodes with a uniform distribution of active material, electrical conductivity of 3.5 × 103 S/m (e.g., 0.25 S/m out-of-plane) and high toughness. The resulting composite electrodes demonstrated a high capacity of 350 mAh/g at the electrode level, coupled with prolonged cycling performance both at low (e.g., 98 % retention over 240 at 0.1 A/g) and high current densities (e.g., 87 % over 1500 cycles at 5 A/g). The embedded conducting network within the electrode produces excellent high-rate properties up to 10 A/g (e.g., ∼170 mAh/g) due to the uniform distribution of active material and high internal electrical conductivity. Embedded CNT electrodes translate into a specific energy density of ∼ 290 Wh/kg at the electrode level, which is a 425 % increase compared to conventional ZIB cells with titanium or stainless-steel current collectors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过在氧化钒中嵌入碳纳米管集流器制备大功率高能锌离子阴极
水溶液可充电锌离子电池(zib)代表了一种有前途的技术,在各种应用中越来越多地采用,特别是在固定能量存储目的。尽管在提高zib电极材料的容量方面取得了显著进展,但在电极水平上表现出高容量的阴极的开发,具有应用相关的质量负载和长时间的稳定性,仍然具有挑战性。在此,我们引入了由氧化钒和嵌入碳纳米管导电网络组成的复合电极,通过消除粘合剂和金属箔,在整个电极中达到96 wt.%的活性物质。嵌入碳纳米管网络的结果是柔性电极具有均匀分布的活性材料,电导率为3.5×103 S/m(例如,0.25 S/m的面外)和高韧性。所得到的复合电极在电极水平上具有350 mAh/g的高容量,并且在低电流密度下(例如,在0.1 a /g下,超过240次的保留率为98%)和高电流密度下(例如,在5 a /g下,超过1500次的保留率为87%)具有长时间的循环性能。电极内的嵌入式导电网络由于活性材料的均匀分布和高内部导电性,可产生高达10 A/g(例如,~ 170 mAh/g)的优异高速率特性。嵌入的碳纳米管电极在电极水平上转化为约290 Wh/kg的比能量密度,与带有钛或不锈钢集流器的传统ZIB电池相比,增加了425%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Electrochimica Acta
Electrochimica Acta 工程技术-电化学
CiteScore
11.30
自引率
6.10%
发文量
1634
审稿时长
41 days
期刊介绍: Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.
期刊最新文献
Recent Progress in Total Metal-Free Batteries: Materials, Mechanisms, and Challenges Solid-State Electrolytes with Synergistic Hydrogen-Bonding and Anion-Confinement for Stable Lithium Metal Batteries Electrochemically activated La-doped NiCo-S electrode for improving electrochemical performance Enhanced electrochemical performance of hierarchical CoxNi (1-x)MoO4: A morphology control strategy of electrode materials for energy storage Topical review on metal oxides for transparent flexible thin film supercapacitors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1