Unlocking the Potential of Oxymatrine: A Comprehensive Review of Its Neuroprotective Mechanisms and Therapeutic Prospects in Neurological Disorders

IF 4.1 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY ACS Chemical Neuroscience Pub Date : 2024-11-14 DOI:10.1021/acschemneuro.4c0033810.1021/acschemneuro.4c00338
Yogita Dhurandhar, Shubham Tomar, Ashmita Das, As Pee Singh, Jeevan Lal Prajapati, Surendra H. Bodakhe and Kamta P. Namdeo*, 
{"title":"Unlocking the Potential of Oxymatrine: A Comprehensive Review of Its Neuroprotective Mechanisms and Therapeutic Prospects in Neurological Disorders","authors":"Yogita Dhurandhar,&nbsp;Shubham Tomar,&nbsp;Ashmita Das,&nbsp;As Pee Singh,&nbsp;Jeevan Lal Prajapati,&nbsp;Surendra H. Bodakhe and Kamta P. Namdeo*,&nbsp;","doi":"10.1021/acschemneuro.4c0033810.1021/acschemneuro.4c00338","DOIUrl":null,"url":null,"abstract":"<p ><i>Sophora flavescens</i>, the source of oxymatrine, is gaining popularity due to its potential in neuroprotection and treatment of various neurological conditions like epilepsy, depression, Parkinson’s, Alzheimer’s and multiple sclerosis. Its natural occurrence and promising preliminary research highlight its ability to reduce nerve cell damage and inflammation, attributed to its antiapoptotic, antioxidant and anti-inflammatory properties. However, challenges like solubility, potential adverse effects and limited bioavailability hinder its full therapeutic utilization. Current strategies, including formulation optimization and innovative drug delivery systems, aim to enhance its efficacy and safety. Despite its potential, further research is necessary to overcome these obstacles and maximize its clinical effectiveness. Conclusively, oxymatrine demonstrates distinct neuroprotective properties, offering unique advantages over other agents currently being studied or used in clinical practice for neurological disorders. nevertheless, additional study is necessary to surmount current obstacles and maximize its effectiveness for clinical settings. This study provides a comprehensive overview of oxymatrine’s neuroprotective mechanisms and therapeutic potential while emphasizing the need for continued investigation and development for practical clinical application.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":"15 23","pages":"4245–4257 4245–4257"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acschemneuro.4c00338","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Sophora flavescens, the source of oxymatrine, is gaining popularity due to its potential in neuroprotection and treatment of various neurological conditions like epilepsy, depression, Parkinson’s, Alzheimer’s and multiple sclerosis. Its natural occurrence and promising preliminary research highlight its ability to reduce nerve cell damage and inflammation, attributed to its antiapoptotic, antioxidant and anti-inflammatory properties. However, challenges like solubility, potential adverse effects and limited bioavailability hinder its full therapeutic utilization. Current strategies, including formulation optimization and innovative drug delivery systems, aim to enhance its efficacy and safety. Despite its potential, further research is necessary to overcome these obstacles and maximize its clinical effectiveness. Conclusively, oxymatrine demonstrates distinct neuroprotective properties, offering unique advantages over other agents currently being studied or used in clinical practice for neurological disorders. nevertheless, additional study is necessary to surmount current obstacles and maximize its effectiveness for clinical settings. This study provides a comprehensive overview of oxymatrine’s neuroprotective mechanisms and therapeutic potential while emphasizing the need for continued investigation and development for practical clinical application.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Chemical Neuroscience
ACS Chemical Neuroscience BIOCHEMISTRY & MOLECULAR BIOLOGY-CHEMISTRY, MEDICINAL
CiteScore
9.20
自引率
4.00%
发文量
323
审稿时长
1 months
期刊介绍: ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following: Neurotransmitters and receptors Neuropharmaceuticals and therapeutics Neural development—Plasticity, and degeneration Chemical, physical, and computational methods in neuroscience Neuronal diseases—basis, detection, and treatment Mechanism of aging, learning, memory and behavior Pain and sensory processing Neurotoxins Neuroscience-inspired bioengineering Development of methods in chemical neurobiology Neuroimaging agents and technologies Animal models for central nervous system diseases Behavioral research
期刊最新文献
Competitive Antagonism of Xylazine on α7 Nicotinic Acetylcholine Receptors and Reversal by Curcuminoids. Inhibition of Phosphorylated Alpha-Synuclein Aggregation by Synthetic Protein Mimetics and Foldamers. Cellular Uptake of Tau Aggregates Triggers Disulfide Bond Formation in Four-Repeat Tau Monomers. Brazilin-Rich Extract from Caesalpinia sappan L. Attenuated the Motor Deficits and Neurodegeneration in MPTP/p-Induced Parkinson's Disease Mice by Regulating Gut Microbiota and Inhibiting Inflammatory Responses. Opposite Roles of Cholesterol and Lanosterol in Lipid Membrane on Amyloid-Beta 42 Peptide Nucleation and Fibril Formation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1