Competitive Antagonism of Xylazine on α7 Nicotinic Acetylcholine Receptors and Reversal by Curcuminoids.

IF 4.1 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY ACS Chemical Neuroscience Pub Date : 2024-12-25 DOI:10.1021/acschemneuro.4c00784
Qiang Chen, Yan Xu, Pei Tang
{"title":"Competitive Antagonism of Xylazine on α7 Nicotinic Acetylcholine Receptors and Reversal by Curcuminoids.","authors":"Qiang Chen, Yan Xu, Pei Tang","doi":"10.1021/acschemneuro.4c00784","DOIUrl":null,"url":null,"abstract":"<p><p>Co-use of xylazine with opioids is a major health threat in the United States. However, a critical knowledge gap exists in the understanding of xylazine-induced pharmacological and pathological impact. Xylazine is mostly known as an agonist of α2-adrenergic receptors (α2-ARs), but its deleterious effects on humans cannot be fully reversed by the α2-AR antagonists, suggesting the possibility that xylazine targets receptors other than α2-ARs. Here, we report the discovery of α7 nicotinic acetylcholine receptors (α7 nAChRs) as targets of xylazine. In <i>Xenopus</i> oocytes expressing α7 nAChRs, xylazine competitively antagonizes channel currents elicited by the agonist acetylcholine. In PC12 cells, xylazine suppresses choline-stimulated intracellular calcium ([Ca<sup>2+</sup>]<sub>in</sub>) transients that are mediated by endogenously expressed α7 nAChRs. Furthermore, we find that curcuminoids, ivermectin, and the α7-specific positive allosteric modulator PNU120596 can effectively offset the xylazine inhibition of α7 nAChRs. Considering the prominent role of α7 nAChRs in the cholinergic anti-inflammatory pathway and wide expression in the human body, our findings present a potential new strategy to reverse xylazine-caused damage using curcuminoids or repurposing ivermectin. This α7 nAChR-focused strategy may offer an immediate deployment that is likely effective in improving xylazine-related treatment outcomes.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acschemneuro.4c00784","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Co-use of xylazine with opioids is a major health threat in the United States. However, a critical knowledge gap exists in the understanding of xylazine-induced pharmacological and pathological impact. Xylazine is mostly known as an agonist of α2-adrenergic receptors (α2-ARs), but its deleterious effects on humans cannot be fully reversed by the α2-AR antagonists, suggesting the possibility that xylazine targets receptors other than α2-ARs. Here, we report the discovery of α7 nicotinic acetylcholine receptors (α7 nAChRs) as targets of xylazine. In Xenopus oocytes expressing α7 nAChRs, xylazine competitively antagonizes channel currents elicited by the agonist acetylcholine. In PC12 cells, xylazine suppresses choline-stimulated intracellular calcium ([Ca2+]in) transients that are mediated by endogenously expressed α7 nAChRs. Furthermore, we find that curcuminoids, ivermectin, and the α7-specific positive allosteric modulator PNU120596 can effectively offset the xylazine inhibition of α7 nAChRs. Considering the prominent role of α7 nAChRs in the cholinergic anti-inflammatory pathway and wide expression in the human body, our findings present a potential new strategy to reverse xylazine-caused damage using curcuminoids or repurposing ivermectin. This α7 nAChR-focused strategy may offer an immediate deployment that is likely effective in improving xylazine-related treatment outcomes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Chemical Neuroscience
ACS Chemical Neuroscience BIOCHEMISTRY & MOLECULAR BIOLOGY-CHEMISTRY, MEDICINAL
CiteScore
9.20
自引率
4.00%
发文量
323
审稿时长
1 months
期刊介绍: ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following: Neurotransmitters and receptors Neuropharmaceuticals and therapeutics Neural development—Plasticity, and degeneration Chemical, physical, and computational methods in neuroscience Neuronal diseases—basis, detection, and treatment Mechanism of aging, learning, memory and behavior Pain and sensory processing Neurotoxins Neuroscience-inspired bioengineering Development of methods in chemical neurobiology Neuroimaging agents and technologies Animal models for central nervous system diseases Behavioral research
期刊最新文献
Competitive Antagonism of Xylazine on α7 Nicotinic Acetylcholine Receptors and Reversal by Curcuminoids. Inhibition of Phosphorylated Alpha-Synuclein Aggregation by Synthetic Protein Mimetics and Foldamers. Cellular Uptake of Tau Aggregates Triggers Disulfide Bond Formation in Four-Repeat Tau Monomers. Brazilin-Rich Extract from Caesalpinia sappan L. Attenuated the Motor Deficits and Neurodegeneration in MPTP/p-Induced Parkinson's Disease Mice by Regulating Gut Microbiota and Inhibiting Inflammatory Responses. Opposite Roles of Cholesterol and Lanosterol in Lipid Membrane on Amyloid-Beta 42 Peptide Nucleation and Fibril Formation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1