Tanja Habeck, Silvana Smilla Zurmühl, António J. Figueira, Edvaldo Vasconcelos Soares Maciel, Cláudio M. Gomes and Frederik Lermyte*,
{"title":"Cross-Interactions of Aβ Peptides Implicated in Alzheimer’s Disease Shape Amyloid Oligomer Structures and Aggregation","authors":"Tanja Habeck, Silvana Smilla Zurmühl, António J. Figueira, Edvaldo Vasconcelos Soares Maciel, Cláudio M. Gomes and Frederik Lermyte*, ","doi":"10.1021/acschemneuro.4c0049210.1021/acschemneuro.4c00492","DOIUrl":null,"url":null,"abstract":"<p >A defining hallmark of Alzheimer’s disease (AD) is the synaptic aggregation of the amyloid β (Aβ) peptide. <i>In vivo</i>, Aβ production results in a diverse mixture of variants, of which Aβ40, Aβ42, and Aβ43 are profusely present in the AD brain, and their relative abundance is recognized to play a role in disease onset and progression. Nonetheless, the occurrence of Aβ40, Aβ42, and Aβ43 hetero-oligomerization and the subsequent effects on Aβ aggregation remain elusive and were investigated here. Using thioflavin-T (ThT)-monitored aggregation assays and native mass spectrometry coupled to ion mobility analysis (IM-MS), we first show that all Aβ peptides are aggregation-competent and self-assemble into homo-oligomers with distinct conformational populations, which are more pronounced between Aβ40 than the longer variants. ThT assays were then conducted on binary mixtures of Aβ variants, revealing that Aβ42 and Aβ43 aggregate independently from Aβ40 but significantly speed up Aβ40 fibrillation. Aβ42 and Aβ43 were observed to aggregate concurrently and mutually accelerate fibril formation, which likely involves hetero-oligomerization. Accordingly, native MS analysis revealed pairwise oligomerization between all variants, with the formation of heterodimers and heterotrimers. Interestingly, IM-MS indicates that hetero-oligomers containing longer Aβ variants are enriched in conformers with lower collision cross-sections when compared to their homo-oligomer counterparts. This suggests that Aβ42 and Aβ43 are capable of remodeling the oligomer structure toward a higher compaction level. Altogether, our findings provide a mechanistic description for the hetero-oligomerization of Aβ variants implicated in AD, contributing to rationalizing their <i>in vivo</i> proteotoxic interplay.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":"15 23","pages":"4295–4304 4295–4304"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acschemneuro.4c00492","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A defining hallmark of Alzheimer’s disease (AD) is the synaptic aggregation of the amyloid β (Aβ) peptide. In vivo, Aβ production results in a diverse mixture of variants, of which Aβ40, Aβ42, and Aβ43 are profusely present in the AD brain, and their relative abundance is recognized to play a role in disease onset and progression. Nonetheless, the occurrence of Aβ40, Aβ42, and Aβ43 hetero-oligomerization and the subsequent effects on Aβ aggregation remain elusive and were investigated here. Using thioflavin-T (ThT)-monitored aggregation assays and native mass spectrometry coupled to ion mobility analysis (IM-MS), we first show that all Aβ peptides are aggregation-competent and self-assemble into homo-oligomers with distinct conformational populations, which are more pronounced between Aβ40 than the longer variants. ThT assays were then conducted on binary mixtures of Aβ variants, revealing that Aβ42 and Aβ43 aggregate independently from Aβ40 but significantly speed up Aβ40 fibrillation. Aβ42 and Aβ43 were observed to aggregate concurrently and mutually accelerate fibril formation, which likely involves hetero-oligomerization. Accordingly, native MS analysis revealed pairwise oligomerization between all variants, with the formation of heterodimers and heterotrimers. Interestingly, IM-MS indicates that hetero-oligomers containing longer Aβ variants are enriched in conformers with lower collision cross-sections when compared to their homo-oligomer counterparts. This suggests that Aβ42 and Aβ43 are capable of remodeling the oligomer structure toward a higher compaction level. Altogether, our findings provide a mechanistic description for the hetero-oligomerization of Aβ variants implicated in AD, contributing to rationalizing their in vivo proteotoxic interplay.
期刊介绍:
ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following:
Neurotransmitters and receptors
Neuropharmaceuticals and therapeutics
Neural development—Plasticity, and degeneration
Chemical, physical, and computational methods in neuroscience
Neuronal diseases—basis, detection, and treatment
Mechanism of aging, learning, memory and behavior
Pain and sensory processing
Neurotoxins
Neuroscience-inspired bioengineering
Development of methods in chemical neurobiology
Neuroimaging agents and technologies
Animal models for central nervous system diseases
Behavioral research