Whisker Sensor With Extended Measurement Range Through Jamming Effects Using 3D-Printed Tetrapod Particles

IF 2.5 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Microelectromechanical Systems Pub Date : 2024-10-16 DOI:10.1109/JMEMS.2024.3474010
Woojun Jung;Seonghyeon Lee;Deyi Zheng;Muhammad Hilal;Yongha Hwang
{"title":"Whisker Sensor With Extended Measurement Range Through Jamming Effects Using 3D-Printed Tetrapod Particles","authors":"Woojun Jung;Seonghyeon Lee;Deyi Zheng;Muhammad Hilal;Yongha Hwang","doi":"10.1109/JMEMS.2024.3474010","DOIUrl":null,"url":null,"abstract":"Whisker sensors, typically fabricated by casting soft polymers, have a measurement range determined by the mechanical properties of the soft polymer used, specifically, its Young’s modulus. Traditional whisker sensors have fixed stiffness after fabrication, which limits their measurement range. However, this study introduced a sensor that integrates a jamming actuator with a whisker sensor, allowing for adjustable stiffness. This adjustment not only enables high sensitivity within a specific measurement range but also expands the measurable range. Moreover, to enhance the jamming effect, tetrapod-shaped particles, which exhibit the highest friction, were fabricated using 3D printing, significantly improving the measurement range. Additionally, four channels were strategically placed at the shell edges, within which materials with Young’s moduli higher than that of polydimethylsiloxane (PDMS) could be filled, allowing for an adjustable overall stiffness. When no vacuum pressure was applied, the whisker sensor filled with tetrapod particles was able to measure forces with a sensitivity of approximately 93 mm/N in the range of 0–70 mN. When a vacuum pressure of –50 kPa was applied, the sensor could measure forces with a sensitivity of around 82 mm/N in the range of 70–140 mN. Under a vacuum pressure of –100 kPa, the sensor could measure forces with a sensitivity of approximately 65 mm/N in the range of 140–220 mN. This innovation enables the selective expansion of the sensitivity and measurement range, which were previously difficult to achieve, showcasing new possibilities for jamming actuators and their potential use in exploration environments requiring a wide measurement range.[2024-0099]","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"33 6","pages":"758-766"},"PeriodicalIF":2.5000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microelectromechanical Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10720540/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Whisker sensors, typically fabricated by casting soft polymers, have a measurement range determined by the mechanical properties of the soft polymer used, specifically, its Young’s modulus. Traditional whisker sensors have fixed stiffness after fabrication, which limits their measurement range. However, this study introduced a sensor that integrates a jamming actuator with a whisker sensor, allowing for adjustable stiffness. This adjustment not only enables high sensitivity within a specific measurement range but also expands the measurable range. Moreover, to enhance the jamming effect, tetrapod-shaped particles, which exhibit the highest friction, were fabricated using 3D printing, significantly improving the measurement range. Additionally, four channels were strategically placed at the shell edges, within which materials with Young’s moduli higher than that of polydimethylsiloxane (PDMS) could be filled, allowing for an adjustable overall stiffness. When no vacuum pressure was applied, the whisker sensor filled with tetrapod particles was able to measure forces with a sensitivity of approximately 93 mm/N in the range of 0–70 mN. When a vacuum pressure of –50 kPa was applied, the sensor could measure forces with a sensitivity of around 82 mm/N in the range of 70–140 mN. Under a vacuum pressure of –100 kPa, the sensor could measure forces with a sensitivity of approximately 65 mm/N in the range of 140–220 mN. This innovation enables the selective expansion of the sensitivity and measurement range, which were previously difficult to achieve, showcasing new possibilities for jamming actuators and their potential use in exploration environments requiring a wide measurement range.[2024-0099]
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
须传感器与扩展的测量范围通过干扰效应使用3d打印四足粒子
晶须传感器通常由铸造软聚合物制造,其测量范围由所用软聚合物的机械性能决定,特别是其杨氏模量。传统的晶须传感器在制作完成后具有固定的刚度,限制了其测量范围。然而,本研究介绍了一种集成了干扰致动器和须状传感器的传感器,允许可调刚度。这种调整不仅可以在特定的测量范围内实现高灵敏度,而且可以扩大可测量范围。此外,为了增强干扰效果,采用3D打印技术制备了摩擦力最大的四足形颗粒,显著提高了测量范围。此外,在外壳边缘策略性地放置了四个通道,其中可以填充杨氏模量高于聚二甲基硅氧烷(PDMS)的材料,从而实现可调的整体刚度。当不施加真空压力时,填充四足粒子的晶须传感器能够在0-70 mN范围内以约93 mm/N的灵敏度测量力。当施加-50 kPa的真空压力时,传感器在70-140 mN范围内测量力的灵敏度约为82 mm/N。在-100 kPa的真空压力下,该传感器在140-220 mN范围内的测力灵敏度约为65 mm/N。这一创新能够选择性地扩展灵敏度和测量范围,这是以前难以实现的,展示了干扰执行器的新可能性,以及它们在需要宽测量范围的勘探环境中的潜在应用。[2024-0099]
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Microelectromechanical Systems
Journal of Microelectromechanical Systems 工程技术-工程:电子与电气
CiteScore
6.20
自引率
7.40%
发文量
115
审稿时长
7.5 months
期刊介绍: The topics of interest include, but are not limited to: devices ranging in size from microns to millimeters, IC-compatible fabrication techniques, other fabrication techniques, measurement of micro phenomena, theoretical results, new materials and designs, micro actuators, micro robots, micro batteries, bearings, wear, reliability, electrical interconnections, micro telemanipulation, and standards appropriate to MEMS. Application examples and application oriented devices in fluidics, optics, bio-medical engineering, etc., are also of central interest.
期刊最新文献
2024 Index Journal of Microelectromechanical Systems Vol. 33 Table of Contents Front Cover Journal of Microelectromechanical Systems Publication Information TechRxiv: Share Your Preprint Research With the World!
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1