Light-driven water oxidation by a BiVO4/TiO2 photoanode modified with D102 organic dye and copper(ii) meso-tetra(4-carboxyphenyl)porphyrin†

IF 5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL Sustainable Energy & Fuels Pub Date : 2024-11-11 DOI:10.1039/D4SE00543K
Andi Mauliana, Muhammad Iqbal Syauqi, Zico Alaia Akbar, Uji Pratomo, Jacob Yan Mulyana and Tribidasari A. Ivandini
{"title":"Light-driven water oxidation by a BiVO4/TiO2 photoanode modified with D102 organic dye and copper(ii) meso-tetra(4-carboxyphenyl)porphyrin†","authors":"Andi Mauliana, Muhammad Iqbal Syauqi, Zico Alaia Akbar, Uji Pratomo, Jacob Yan Mulyana and Tribidasari A. Ivandini","doi":"10.1039/D4SE00543K","DOIUrl":null,"url":null,"abstract":"<p >To improve its photoelectrocatalytic water oxidation properties, the BiVO<small><sub>4</sub></small> photoanode was integrated with TiO<small><sub>2</sub></small> modified by Indoline D102 dye and copper(<small>II</small>) meso-tetra(4-carboxyphenyl)porphyrin (CuTCPP). The dye was used as a redox mediator, whereas CuTCPP served as a co-catalyst for light-driven water oxidation. The systematic modifications on photoanodes were meticulously characterized by SEM, XRD, UV-Vis spectrometry, and potentiostatic analyses. Modification of the BiVO<small><sub>4</sub></small> photoanode with TiO<small><sub>2</sub></small> followed by D102 and CuTCPP (BiVO<small><sub>4</sub></small>/TiO<small><sub>2</sub></small>/D102-CuTCPP) demonstrates a remarkable improvement in photoelectrocatalytic water oxidation properties compared to those of the unmodified BiVO<small><sub>4</sub></small> film. An increase of power density up to 20 fold was observed under 100 mW cm<small><sup>−2</sup></small> light irradiation at a bias potential of 1.27 V<small><sub>RHE</sub></small>. The system also demonstrated good stability, with a photocurrent retention of around 97% of the initial photocurrent over a 20 minutes period and retaining 69% of its initial value after 2 hours of continuous operation. Furthermore, the photoelectrocatalytic water splitting exhibited a high faradaic efficiency of oxygen evolution at approximately 97%. These excellent performances were attributed to the synergy of dye and co-catalyst co-assembly by forming a cascade hole transfer mechanism which improves the water oxidation kinetics and reduces the electron–hole recombination rate of BiVO<small><sub>4</sub></small> in the photoanode system.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 24","pages":" 5927-5936"},"PeriodicalIF":5.0000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy & Fuels","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/se/d4se00543k","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

To improve its photoelectrocatalytic water oxidation properties, the BiVO4 photoanode was integrated with TiO2 modified by Indoline D102 dye and copper(II) meso-tetra(4-carboxyphenyl)porphyrin (CuTCPP). The dye was used as a redox mediator, whereas CuTCPP served as a co-catalyst for light-driven water oxidation. The systematic modifications on photoanodes were meticulously characterized by SEM, XRD, UV-Vis spectrometry, and potentiostatic analyses. Modification of the BiVO4 photoanode with TiO2 followed by D102 and CuTCPP (BiVO4/TiO2/D102-CuTCPP) demonstrates a remarkable improvement in photoelectrocatalytic water oxidation properties compared to those of the unmodified BiVO4 film. An increase of power density up to 20 fold was observed under 100 mW cm−2 light irradiation at a bias potential of 1.27 VRHE. The system also demonstrated good stability, with a photocurrent retention of around 97% of the initial photocurrent over a 20 minutes period and retaining 69% of its initial value after 2 hours of continuous operation. Furthermore, the photoelectrocatalytic water splitting exhibited a high faradaic efficiency of oxygen evolution at approximately 97%. These excellent performances were attributed to the synergy of dye and co-catalyst co-assembly by forming a cascade hole transfer mechanism which improves the water oxidation kinetics and reduces the electron–hole recombination rate of BiVO4 in the photoanode system.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用D102有机染料和铜修饰的BiVO4/TiO2光阳极光驱动水氧化(ii)中四(4-羧基苯基)卟啉†
为了提高BiVO4光阳极的光电催化水氧化性能,将吲哚啉D102染料修饰的TiO2和铜(II)中四(4-羧基苯基)卟啉(CuTCPP)集成在BiVO4光阳极上。该染料被用作氧化还原介质,而CuTCPP作为光驱动水氧化的助催化剂。通过SEM, XRD, UV-Vis光谱和恒电位分析对光阳极的系统修饰进行了细致的表征。用TiO2修饰BiVO4光阳极,再用D102和CuTCPP修饰BiVO4 (BiVO4/TiO2/D102-CuTCPP),与未修饰的BiVO4膜相比,光电催化水氧化性能显著提高。在偏置电位为1.27 VRHE的100mw cm−2光照射下,观察到功率密度增加了20倍。该系统还显示出良好的稳定性,在20分钟的时间内光电流保持在初始光电流的97%左右,连续工作2小时后保持在初始光电流的69%左右。此外,光电催化水裂解的析氧法拉第效率约为97%。这些优异的性能归因于染料和助催化剂的协同作用,形成了级联空穴转移机制,改善了水氧化动力学,降低了BiVO4在光阳极体系中的电子-空穴复合速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Sustainable Energy & Fuels
Sustainable Energy & Fuels Energy-Energy Engineering and Power Technology
CiteScore
10.00
自引率
3.60%
发文量
394
期刊介绍: Sustainable Energy & Fuels will publish research that contributes to the development of sustainable energy technologies with a particular emphasis on new and next-generation technologies.
期刊最新文献
Back cover Back cover 2D Ti3C2Tx–xGnP incorporating PVDF/PMMA blend composites for dielectric capacitors Substitution of magnesium towards stabilizing low-nickel layered oxides for high voltage and cost-effective sodium-ion batteries† Electrode engineering considerations for high energy efficiency Li–CO2 batteries†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1