The surprising structure of non-relativistic 11-dimensional supergravity

IF 5.4 1区 物理与天体物理 Q1 Physics and Astronomy Journal of High Energy Physics Pub Date : 2024-12-03 DOI:10.1007/JHEP12(2024)010
Eric A. Bergshoeff, Chris D. A. Blair, Johannes Lahnsteiner, Jan Rosseel
{"title":"The surprising structure of non-relativistic 11-dimensional supergravity","authors":"Eric A. Bergshoeff,&nbsp;Chris D. A. Blair,&nbsp;Johannes Lahnsteiner,&nbsp;Jan Rosseel","doi":"10.1007/JHEP12(2024)010","DOIUrl":null,"url":null,"abstract":"<p>We study a non-relativistic limit of 11-dimensional supergravity. This limit leads to a theory with an underlying membrane Newton-Cartan geometry. Consistency of the non-relativistic limit requires the imposition of constraints, requiring that certain bosonic and fermionic torsions and curvatures vanish. We investigate the implications of two versions of these constraints. In one version, we keep only 16 supersymmetry transformations, leading to a simple (purely bosonic) constraint structure but an unusual realisation of the supersymmetry algebra which does not close into diffeomorphisms. In the other, we keep all 32 supersymmetry transformations. This requires a complicated sequence of bosonic and fermionic constraints, eventually involving three derivatives of bosonic fields. We argue, with a linearised calculation, that this sequence of constraints terminates. Furthermore, we show that there exists a family of supersymmetric solutions satisfying these constraints, containing the non-relativistic limit of the M2 supergravity solution recently obtained by Lambert and Smith as a background relevant for non-relativistic holography.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2024 12","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP12(2024)010.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP12(2024)010","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

We study a non-relativistic limit of 11-dimensional supergravity. This limit leads to a theory with an underlying membrane Newton-Cartan geometry. Consistency of the non-relativistic limit requires the imposition of constraints, requiring that certain bosonic and fermionic torsions and curvatures vanish. We investigate the implications of two versions of these constraints. In one version, we keep only 16 supersymmetry transformations, leading to a simple (purely bosonic) constraint structure but an unusual realisation of the supersymmetry algebra which does not close into diffeomorphisms. In the other, we keep all 32 supersymmetry transformations. This requires a complicated sequence of bosonic and fermionic constraints, eventually involving three derivatives of bosonic fields. We argue, with a linearised calculation, that this sequence of constraints terminates. Furthermore, we show that there exists a family of supersymmetric solutions satisfying these constraints, containing the non-relativistic limit of the M2 supergravity solution recently obtained by Lambert and Smith as a background relevant for non-relativistic holography.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of High Energy Physics
Journal of High Energy Physics 物理-物理:粒子与场物理
CiteScore
10.30
自引率
46.30%
发文量
2107
审稿时长
1.5 months
期刊介绍: The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal. Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles. JHEP presently encompasses the following areas of theoretical and experimental physics: Collider Physics Underground and Large Array Physics Quantum Field Theory Gauge Field Theories Symmetries String and Brane Theory General Relativity and Gravitation Supersymmetry Mathematical Methods of Physics Mostly Solvable Models Astroparticles Statistical Field Theories Mostly Weak Interactions Mostly Strong Interactions Quantum Field Theory (phenomenology) Strings and Branes Phenomenological Aspects of Supersymmetry Mostly Strong Interactions (phenomenology).
期刊最新文献
Thermal one-point functions and their partial wave decomposition Gauge-fixing local H symmetry in supergravities Consistency conditions for O-plane unsmearing from second-order perturbation theory T violation at a future neutrino factory Heterotic strings and quantum entanglement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1