Effects of heavy metals and metalloids on plant-animal interaction and biodiversity of terrestrial ecosystems—an overview

IF 2.9 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES Environmental Monitoring and Assessment Pub Date : 2024-12-03 DOI:10.1007/s10661-024-13490-5
Baba Imoro Musah
{"title":"Effects of heavy metals and metalloids on plant-animal interaction and biodiversity of terrestrial ecosystems—an overview","authors":"Baba Imoro Musah","doi":"10.1007/s10661-024-13490-5","DOIUrl":null,"url":null,"abstract":"<div><p>Heavy metals and metalloids are ubiquitous and persistent in the environment. Anthropogenic activities, including land use change, industrial emissions, mining, chrome plating, and smelting, escalate their distribution and accumulation in terrestrial ecosystems. Priority metals, including lead, chromium, arsenic, nickel, copper, cadmium, and mercury, pose enormous risks to public health, ecological safety, and biodiversity. The adverse effects of heavy metals on plant-animal interactions, pollen viability, species fitness, richness, and abundance are poorly understood. Hence, this review summarises the critical insights from primary investigations on the key sources of heavy metal pollution, distribution pathways, and their adverse effects on plants and pollinators. This study provides insights into how heavy metals compromise nectar quality, pollen viability, plant-pollinator growth, and reproduction. Biotic pollinators are responsible for approximately 90% of the reproduction of flowering plants. Heavy metals adversely affect pollinators that rely on angiosperms for nectar and pollen. Heavy metals interrupt pollinators’ and plants’ growth, reproduction, and survival. Evidence showed that bees near gold mines had their olfactory learning performances and head sizes reduced by 36% and 4% due to heavy metals exposure. Cadmium (Cd) interrupts the redox balance, causes oxidative stress, alters gut microbiota, and reduces the survival rate of <i>Apis cerana cerana</i>. Excess Cd exposure reduced the flight capacity, loss of mitochondria, and damaged muscle fibre of <i>Bombus terrestris,</i> while Zn stress reduced egg production and hatchability of <i>Harmonia axyridis.</i> Furthermore, heavy metals alter flower visitation, foraging behaviour, and pollination efficiency.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":544,"journal":{"name":"Environmental Monitoring and Assessment","volume":"197 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Monitoring and Assessment","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10661-024-13490-5","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Heavy metals and metalloids are ubiquitous and persistent in the environment. Anthropogenic activities, including land use change, industrial emissions, mining, chrome plating, and smelting, escalate their distribution and accumulation in terrestrial ecosystems. Priority metals, including lead, chromium, arsenic, nickel, copper, cadmium, and mercury, pose enormous risks to public health, ecological safety, and biodiversity. The adverse effects of heavy metals on plant-animal interactions, pollen viability, species fitness, richness, and abundance are poorly understood. Hence, this review summarises the critical insights from primary investigations on the key sources of heavy metal pollution, distribution pathways, and their adverse effects on plants and pollinators. This study provides insights into how heavy metals compromise nectar quality, pollen viability, plant-pollinator growth, and reproduction. Biotic pollinators are responsible for approximately 90% of the reproduction of flowering plants. Heavy metals adversely affect pollinators that rely on angiosperms for nectar and pollen. Heavy metals interrupt pollinators’ and plants’ growth, reproduction, and survival. Evidence showed that bees near gold mines had their olfactory learning performances and head sizes reduced by 36% and 4% due to heavy metals exposure. Cadmium (Cd) interrupts the redox balance, causes oxidative stress, alters gut microbiota, and reduces the survival rate of Apis cerana cerana. Excess Cd exposure reduced the flight capacity, loss of mitochondria, and damaged muscle fibre of Bombus terrestris, while Zn stress reduced egg production and hatchability of Harmonia axyridis. Furthermore, heavy metals alter flower visitation, foraging behaviour, and pollination efficiency.

Graphical Abstract

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Monitoring and Assessment
Environmental Monitoring and Assessment 环境科学-环境科学
CiteScore
4.70
自引率
6.70%
发文量
1000
审稿时长
7.3 months
期刊介绍: Environmental Monitoring and Assessment emphasizes technical developments and data arising from environmental monitoring and assessment, the use of scientific principles in the design of monitoring systems at the local, regional and global scales, and the use of monitoring data in assessing the consequences of natural resource management actions and pollution risks to man and the environment.
期刊最新文献
Laser land leveling technology for paddy production in Vietnam: impact on efficient irrigation and water conservation Analyzing the impact of variations in land use and elevation on selected soil microbial indices and spatial distribution Abundance of fecal indicator bacteria and diversity of Escherichia coli associated with poultry farms and pasture land cover in streams of northwestern South Carolina Application of multivariate statistical techniques in the assessment of long-term surface water quality in Dong Thap Province, Vietnam Interventions of river connectivity and land use on indices of biotic integrity (IBIs) in plain river networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1