Mesoscale Variations in the Number of Thunder Days Over the Japanese Archipelago During the Past Fifty-Six Years

IF 3.5 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES International Journal of Climatology Pub Date : 2024-10-22 DOI:10.1002/joc.8658
Hiroyuki Iwasaki
{"title":"Mesoscale Variations in the Number of Thunder Days Over the Japanese Archipelago During the Past Fifty-Six Years","authors":"Hiroyuki Iwasaki","doi":"10.1002/joc.8658","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The spatial and temporal variations of cumulonimbus clouds (Cbs) that produce lightning have mesoscale characteristics due to the nature of Cbs and the influence of topography; however, previous studies have lacked a mesoscale perspective because historical lightning observations relied on human observation. In this study, mesoscale variations in the number of thunder days (TDs) over the Japanese Archipelago over a 56-year period were investigated using manned observation data (Period 1: 1954–1963) and radio-wave observation data (Period 2: 2010–2019). A comparison of the two periods of Period 1 and Period 2 revealed that the locations of mesoscale areas with high TDs did not change significantly; however, the number of TDs increased in most mesoscale areas and it was not possible to identify any mesoscale areas with a significant decreasing trend. The characteristics of mesoscale variation varied with the season as follows: (1) Winter (November–January): the number of TDs along the coastal lands of the Sea of Japan increased significantly. The variations in the synoptic-scale winter pressure pattern with low stability were one of the factors contributing to the increasing trend of TDs. (2) In the first half of the Baiu season (June), the number of TDs increased in two regions: one region was the south of Japan associated with the Baiu front, while the second region was the northern area of Japan, where the influence of the Baiu front is limited. (3) Summer (August): the number of TDs in mountainous areas tended to increase significantly, and the variation in the water vapour content was significantly correlated with the variation in the number of TDs. The number of TDs in the foothills did not increase significantly. (4) Akisame season (September): the number of TDs along the Pacific Ocean coast significantly increased.</p>\n </div>","PeriodicalId":13779,"journal":{"name":"International Journal of Climatology","volume":"44 15","pages":"5655-5666"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Climatology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/joc.8658","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The spatial and temporal variations of cumulonimbus clouds (Cbs) that produce lightning have mesoscale characteristics due to the nature of Cbs and the influence of topography; however, previous studies have lacked a mesoscale perspective because historical lightning observations relied on human observation. In this study, mesoscale variations in the number of thunder days (TDs) over the Japanese Archipelago over a 56-year period were investigated using manned observation data (Period 1: 1954–1963) and radio-wave observation data (Period 2: 2010–2019). A comparison of the two periods of Period 1 and Period 2 revealed that the locations of mesoscale areas with high TDs did not change significantly; however, the number of TDs increased in most mesoscale areas and it was not possible to identify any mesoscale areas with a significant decreasing trend. The characteristics of mesoscale variation varied with the season as follows: (1) Winter (November–January): the number of TDs along the coastal lands of the Sea of Japan increased significantly. The variations in the synoptic-scale winter pressure pattern with low stability were one of the factors contributing to the increasing trend of TDs. (2) In the first half of the Baiu season (June), the number of TDs increased in two regions: one region was the south of Japan associated with the Baiu front, while the second region was the northern area of Japan, where the influence of the Baiu front is limited. (3) Summer (August): the number of TDs in mountainous areas tended to increase significantly, and the variation in the water vapour content was significantly correlated with the variation in the number of TDs. The number of TDs in the foothills did not increase significantly. (4) Akisame season (September): the number of TDs along the Pacific Ocean coast significantly increased.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
过去五十六年来日本列岛雷电日数的中尺度变化
由于积雨云的性质和地形的影响,产生闪电的积雨云的时空变化具有中尺度特征;然而,以往的研究缺乏中尺度视角,因为历史上的闪电观测依赖于人类观测。本文利用人工观测资料(第1期:1954-1963)和无线电波观测资料(第2期:2010-2019),研究了56年来日本列岛雷电日数的中尺度变化。第1期和第2期的中尺度高td区位置变化不明显;然而,在大多数中尺度地区,TDs数量增加,不可能确定任何中尺度地区有明显的减少趋势。中尺度变化的季节特征如下:(1)冬季(11 - 1月):日本海沿岸地区TDs数量显著增加;低稳定性的天气尺度冬季气压型的变化是造成TDs增加趋势的因素之一。(2)白球季前半期(6月),白球锋影响的日本南部地区和白球锋影响有限的日本北部地区的td数量均有所增加。(3)夏季(8月):山区TDs数量有显著增加的趋势,水汽含量变化与TDs数量变化呈显著相关。山麓地区的TDs数量没有显著增加。(4)同季(9月):太平洋沿岸td数量显著增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Climatology
International Journal of Climatology 地学-气象与大气科学
CiteScore
7.50
自引率
7.70%
发文量
417
审稿时长
4 months
期刊介绍: The International Journal of Climatology aims to span the well established but rapidly growing field of climatology, through the publication of research papers, short communications, major reviews of progress and reviews of new books and reports in the area of climate science. The Journal’s main role is to stimulate and report research in climatology, from the expansive fields of the atmospheric, biophysical, engineering and social sciences. Coverage includes: Climate system science; Local to global scale climate observations and modelling; Seasonal to interannual climate prediction; Climatic variability and climate change; Synoptic, dynamic and urban climatology, hydroclimatology, human bioclimatology, ecoclimatology, dendroclimatology, palaeoclimatology, marine climatology and atmosphere-ocean interactions; Application of climatological knowledge to environmental assessment and management and economic production; Climate and society interactions
期刊最新文献
Issue Information Issue Information Time Series Clustering of Sea Surface Temperature in the Mediterranean and Black Sea Marine System An Elevated Influence of the Low-Latitude Drivers on the East Asian Winter Monsoon After Around 1990 Improvement in the Low Temperature Prediction Skill During Cold Winters Over the Mid–High Latitudes of Eurasia in CFSv2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1