Statistical Characteristics of Snowfall on the Tibetan Plateau Affected by TCs Over the Bay of Bengal: An Observational Analysis

IF 3.5 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES International Journal of Climatology Pub Date : 2024-10-13 DOI:10.1002/joc.8650
Wei Ye, Ying Li, Yuan Yuan
{"title":"Statistical Characteristics of Snowfall on the Tibetan Plateau Affected by TCs Over the Bay of Bengal: An Observational Analysis","authors":"Wei Ye,&nbsp;Ying Li,&nbsp;Yuan Yuan","doi":"10.1002/joc.8650","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this study, the characteristics of tropical cyclones (TCs) over the Bay of Bengal (BoB) that affect snowfall on the Tibetan Plateau (TP) and spatiotemporal distribution of snowfall related to BoB TCs are statistically analysed by using multi-sources data from 1981 to 2020, with partitioning TC-influenced snowfall by tracking cloud clusters. The results show that 141 TCs formed during the 40-year period of 1981–2020, of which about 35% (50 TCs) impacted snowfall at 83% of meteorological stations on the TP during their northward or westward movement, and the average distance between the TC centre and the snowfall stations is 1277 km. The proportion of snowfall-related TC frequency shows a significantly decreasing trend with a predominant cycle of 10a. The TC-influenced snowfall frequency (SF), precipitation amount (PA) on a snowfall day and snow depth (SD) during 1981–2020 all show a non-significant weak decreasing trend, while TC-influenced snowfall is significantly increased in the eastern and southern edges of Xizang, western Sichuan and the southern margin of Qinghai. PA and SD in December account for more than 75% and 55% of the monthly total, respectively. The spatial pattern of PA could be objectively categorised into west-type (24%) and southeast-type (76%). The moisture transported by the BoB TC and a southerly jet stream formed between the trough and the western Pacific subtropical high (WPSH), the convergence of cold air and warm–moist airstream over the TP and the change in position of the south Asian high in the upper troposphere are significant factors causing the different spatial distribution. The results can provide reference for TC-related snowfall, SD prediction and disaster assessment on the TP.</p>\n </div>","PeriodicalId":13779,"journal":{"name":"International Journal of Climatology","volume":"44 15","pages":"5520-5536"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Climatology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/joc.8650","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, the characteristics of tropical cyclones (TCs) over the Bay of Bengal (BoB) that affect snowfall on the Tibetan Plateau (TP) and spatiotemporal distribution of snowfall related to BoB TCs are statistically analysed by using multi-sources data from 1981 to 2020, with partitioning TC-influenced snowfall by tracking cloud clusters. The results show that 141 TCs formed during the 40-year period of 1981–2020, of which about 35% (50 TCs) impacted snowfall at 83% of meteorological stations on the TP during their northward or westward movement, and the average distance between the TC centre and the snowfall stations is 1277 km. The proportion of snowfall-related TC frequency shows a significantly decreasing trend with a predominant cycle of 10a. The TC-influenced snowfall frequency (SF), precipitation amount (PA) on a snowfall day and snow depth (SD) during 1981–2020 all show a non-significant weak decreasing trend, while TC-influenced snowfall is significantly increased in the eastern and southern edges of Xizang, western Sichuan and the southern margin of Qinghai. PA and SD in December account for more than 75% and 55% of the monthly total, respectively. The spatial pattern of PA could be objectively categorised into west-type (24%) and southeast-type (76%). The moisture transported by the BoB TC and a southerly jet stream formed between the trough and the western Pacific subtropical high (WPSH), the convergence of cold air and warm–moist airstream over the TP and the change in position of the south Asian high in the upper troposphere are significant factors causing the different spatial distribution. The results can provide reference for TC-related snowfall, SD prediction and disaster assessment on the TP.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
受孟加拉湾TCs影响的青藏高原降雪统计特征:一个观测分析
本文利用1981 - 2020年多源数据,对孟加拉湾热带气旋(BoB)对青藏高原(TP)降雪的影响特征和与BoB热带气旋相关的降雪时空分布进行了统计分析,并通过跟踪云团对其影响进行了划分。结果表明:1981—2020年40 a期间共形成141个TC,其中约35%(50个TC)在向北或向西移动过程中影响了TP上83%的气象站的降雪,TC中心与降雪站点的平均距离为1277 km;与降雪相关的TC频率所占比例呈显著下降趋势,以10a为主导周期。1981—2020年,tc影响的降雪频率(SF)、降雪日降水量(PA)和雪深(SD)均呈现不显著的弱减少趋势,而西藏东南缘、四川西部和青海南缘受tc影响的降雪量显著增加。12月的PA和SD分别占月度总额的75%和55%以上。其空间格局客观上可分为西部型(24%)和东南部型(76%)。低压槽和西太平洋副热带高压之间形成的偏南急流、高原上空冷空气和暖湿气流的辐合以及对流层上层南亚高压位置的变化是造成空间分布差异的重要因素。研究结果可为TP地区与tc相关的降雪、SD预报和灾害评估提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Climatology
International Journal of Climatology 地学-气象与大气科学
CiteScore
7.50
自引率
7.70%
发文量
417
审稿时长
4 months
期刊介绍: The International Journal of Climatology aims to span the well established but rapidly growing field of climatology, through the publication of research papers, short communications, major reviews of progress and reviews of new books and reports in the area of climate science. The Journal’s main role is to stimulate and report research in climatology, from the expansive fields of the atmospheric, biophysical, engineering and social sciences. Coverage includes: Climate system science; Local to global scale climate observations and modelling; Seasonal to interannual climate prediction; Climatic variability and climate change; Synoptic, dynamic and urban climatology, hydroclimatology, human bioclimatology, ecoclimatology, dendroclimatology, palaeoclimatology, marine climatology and atmosphere-ocean interactions; Application of climatological knowledge to environmental assessment and management and economic production; Climate and society interactions
期刊最新文献
Issue Information Issue Information Time Series Clustering of Sea Surface Temperature in the Mediterranean and Black Sea Marine System An Elevated Influence of the Low-Latitude Drivers on the East Asian Winter Monsoon After Around 1990 Improvement in the Low Temperature Prediction Skill During Cold Winters Over the Mid–High Latitudes of Eurasia in CFSv2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1