Microstructure and ion-exchange properties of transparent glass–ceramics containing Mg2SiO4 crystals

IF 2.1 3区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS International Journal of Applied Glass Science Pub Date : 2024-10-14 DOI:10.1111/ijag.16693
Kangkang Geng, Yunlan Guo, Chao Liu
{"title":"Microstructure and ion-exchange properties of transparent glass–ceramics containing Mg2SiO4 crystals","authors":"Kangkang Geng,&nbsp;Yunlan Guo,&nbsp;Chao Liu","doi":"10.1111/ijag.16693","DOIUrl":null,"url":null,"abstract":"<p>Transparent glass–ceramics (GCs) with excellent mechanical properties is a growing demand in the field of optoelectronic devices. In this work, Mg<sub>2</sub>SiO<sub>4</sub> nanocrystals embedded transparent GCs were prepared using the melt-quenching method. The effects of the TiO<sub>2</sub> content on the structural and crystallization properties of glass were examined, and the influence of Mg<sub>2</sub>SiO<sub>4</sub> crystallization on the depth of layer (DOL) for K–Na ion-exchange was also investigated. The introduction of TiO<sub>2</sub> was advantageous for the enhanced bulk crystallization of Mg<sub>2</sub>SiO<sub>4</sub> nanocrystals within the glass matrix. With an increase in the TiO<sub>2</sub> content, the size of Mg<sub>2</sub>SiO<sub>4</sub> nanocrystals decreased, leading to an improvement in the transmittance of the GCs. Crystallization of Mg<sub>2</sub>SiO<sub>4</sub> nanocrystals promoted the increase in Vickers hardness and ion-exchange DOL obviously, and the Vickers hardness can further be improved by ion-exchange. Ion-exchange resulted in the transformation of NaAlSiO<sub>4</sub> into KAlSiO<sub>4</sub>. Results reported here are valuable for the design and preparation of GCs with excellent mechanical and ion-exchange properties.</p>","PeriodicalId":13850,"journal":{"name":"International Journal of Applied Glass Science","volume":"16 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Glass Science","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ijag.16693","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Transparent glass–ceramics (GCs) with excellent mechanical properties is a growing demand in the field of optoelectronic devices. In this work, Mg2SiO4 nanocrystals embedded transparent GCs were prepared using the melt-quenching method. The effects of the TiO2 content on the structural and crystallization properties of glass were examined, and the influence of Mg2SiO4 crystallization on the depth of layer (DOL) for K–Na ion-exchange was also investigated. The introduction of TiO2 was advantageous for the enhanced bulk crystallization of Mg2SiO4 nanocrystals within the glass matrix. With an increase in the TiO2 content, the size of Mg2SiO4 nanocrystals decreased, leading to an improvement in the transmittance of the GCs. Crystallization of Mg2SiO4 nanocrystals promoted the increase in Vickers hardness and ion-exchange DOL obviously, and the Vickers hardness can further be improved by ion-exchange. Ion-exchange resulted in the transformation of NaAlSiO4 into KAlSiO4. Results reported here are valuable for the design and preparation of GCs with excellent mechanical and ion-exchange properties.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
含Mg2SiO4晶体透明微晶玻璃的微观结构和离子交换性能
透明玻璃陶瓷(GCs)具有优异的力学性能,是光电器件领域日益增长的需求。本文采用熔淬法制备了Mg2SiO4纳米晶包埋透明gc。考察了TiO2含量对玻璃结构和结晶性能的影响,以及Mg2SiO4结晶对K-Na离子交换层深(DOL)的影响。TiO2的引入有利于增强Mg2SiO4纳米晶体在玻璃基体内的体晶化。随着TiO2含量的增加,Mg2SiO4纳米晶的尺寸减小,导致gc的透过率提高。Mg2SiO4纳米晶的晶化明显促进了维氏硬度和离子交换DOL的提高,并且离子交换可以进一步提高维氏硬度。离子交换导致NaAlSiO4转化为KAlSiO4。本文的研究结果对设计和制备具有优异力学性能和离子交换性能的gc具有一定的参考价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Applied Glass Science
International Journal of Applied Glass Science MATERIALS SCIENCE, CERAMICS-
CiteScore
4.50
自引率
9.50%
发文量
73
审稿时长
>12 weeks
期刊介绍: The International Journal of Applied Glass Science (IJAGS) endeavors to be an indispensable source of information dealing with the application of glass science and engineering across the entire materials spectrum. Through the solicitation, editing, and publishing of cutting-edge peer-reviewed papers, IJAGS will be a highly respected and enduring chronicle of major advances in applied glass science throughout this century. It will be of critical value to the work of scientists, engineers, educators, students, and organizations involved in the research, manufacture and utilization of the material glass. Guided by an International Advisory Board, IJAGS will focus on topical issue themes that broadly encompass the advanced description, application, modeling, manufacture, and experimental investigation of glass.
期刊最新文献
Issue Information Microstructure and ion-exchange properties of transparent glass–ceramics containing Mg2SiO4 crystals A survey of commercial soda–lime–silica glass compositions: Trends and opportunities I—Compositions, properties and theoretical energy requirements Anti-glare performance of sol-gel-derived spray coatings prepared with various water-to-alkoxide ratios Enthalpy relaxation of sodium aluminosilicate glasses from thermal analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1