Jared Rovny, Sarang Gopalakrishnan, Ania C. Bleszynski Jayich, Patrick Maletinsky, Eugene Demler, Nathalie P. de Leon
{"title":"Nanoscale diamond quantum sensors for many-body physics","authors":"Jared Rovny, Sarang Gopalakrishnan, Ania C. Bleszynski Jayich, Patrick Maletinsky, Eugene Demler, Nathalie P. de Leon","doi":"10.1038/s42254-024-00775-4","DOIUrl":null,"url":null,"abstract":"Nitrogen vacancy (NV) centre quantum sensors provide unique opportunities in studying condensed matter systems, as they are quantitative, non-invasive, physically robust, offer nanoscale resolution and may be used across a wide range of temperatures. These properties have been exploited in recent years to obtain nanoscale resolution measurements of static magnetic fields arising from spin order and current flow in condensed matter systems. Compared with other nanoscale magnetic-field sensors, NV centres have the advantage that they can probe quantities that go beyond average magnetic fields. Leveraging techniques from magnetic resonance, NV centres can perform high-precision noise sensing and have given access to diverse systems, such as fluctuating electrical currents in simple metals and graphene, as well as magnetic dynamics in yttrium iron garnet. In this Technical Review, we provide an overview of NV sensing platforms and modalities and discuss the connections between specific NV measurements and important physical characteristics in condensed matter, such as correlation functions and order parameters, that are inaccessible by other techniques. We conclude with our perspectives on the new insights that may be opened up by NV sensing in condensed matter. Nitrogen vacancy centre quantum sensors are quantitative, non-invasive and physically robust probes of condensed matter systems that offer nanoscale resolution across a wide range of temperatures. This Technical Review discusses the connections between NV measurements and important physical characteristics in condensed matter.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"6 12","pages":"753-768"},"PeriodicalIF":44.8000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42254-024-00775-4","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Nitrogen vacancy (NV) centre quantum sensors provide unique opportunities in studying condensed matter systems, as they are quantitative, non-invasive, physically robust, offer nanoscale resolution and may be used across a wide range of temperatures. These properties have been exploited in recent years to obtain nanoscale resolution measurements of static magnetic fields arising from spin order and current flow in condensed matter systems. Compared with other nanoscale magnetic-field sensors, NV centres have the advantage that they can probe quantities that go beyond average magnetic fields. Leveraging techniques from magnetic resonance, NV centres can perform high-precision noise sensing and have given access to diverse systems, such as fluctuating electrical currents in simple metals and graphene, as well as magnetic dynamics in yttrium iron garnet. In this Technical Review, we provide an overview of NV sensing platforms and modalities and discuss the connections between specific NV measurements and important physical characteristics in condensed matter, such as correlation functions and order parameters, that are inaccessible by other techniques. We conclude with our perspectives on the new insights that may be opened up by NV sensing in condensed matter. Nitrogen vacancy centre quantum sensors are quantitative, non-invasive and physically robust probes of condensed matter systems that offer nanoscale resolution across a wide range of temperatures. This Technical Review discusses the connections between NV measurements and important physical characteristics in condensed matter.
期刊介绍:
Nature Reviews Physics is an online-only reviews journal, part of the Nature Reviews portfolio of journals. It publishes high-quality technical reference, review, and commentary articles in all areas of fundamental and applied physics. The journal offers a range of content types, including Reviews, Perspectives, Roadmaps, Technical Reviews, Expert Recommendations, Comments, Editorials, Research Highlights, Features, and News & Views, which cover significant advances in the field and topical issues. Nature Reviews Physics is published monthly from January 2019 and does not have external, academic editors. Instead, all editorial decisions are made by a dedicated team of full-time professional editors.