Photocontrol of ferroelectricity in multiferroic BiFeO3 via structural modification coupled with photocarrier

IF 7.5 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Communications Materials Pub Date : 2024-12-04 DOI:10.1038/s43246-024-00698-8
Kou Takubo, Atsushi Ono, Shunsuke Ueno, Samiran Banu, Hongwu Yu, Kaito En-ya, Ryota Nishimori, Makoto Kuwahara, Toru Asaka, Kei Maeda, Daiki Ono, Keita Ozawa, Takuma Itoh, Kei Shigematsu, Masaki Azuma, Tadahiko Ishikawa, Yoichi Okimoto, Masaki Hada, Shin-ya Koshihara
{"title":"Photocontrol of ferroelectricity in multiferroic BiFeO3 via structural modification coupled with photocarrier","authors":"Kou Takubo, Atsushi Ono, Shunsuke Ueno, Samiran Banu, Hongwu Yu, Kaito En-ya, Ryota Nishimori, Makoto Kuwahara, Toru Asaka, Kei Maeda, Daiki Ono, Keita Ozawa, Takuma Itoh, Kei Shigematsu, Masaki Azuma, Tadahiko Ishikawa, Yoichi Okimoto, Masaki Hada, Shin-ya Koshihara","doi":"10.1038/s43246-024-00698-8","DOIUrl":null,"url":null,"abstract":"Ultrafast control of ferroelectricity and magnetism by light is essential for future development in multiple functioning devices. Here, we demonstrate that the intense and ultrafast photo-modulation of the electric dipole can be realized by photocarrier injection into a multiferroic BiFeO3 thin film using optical pump-probe and second harmonic generation measurements. Results of ultrafast electron diffraction with <100 fs time resolution and theoretical study reveal that the localized photocarrier strongly couples with the lattice structure and becomes the origin for the observed sudden change in the electric dipole. In addition, the subsequent structural dynamics involve a strong oscillation with a frequency of ~3.3 THz despite a poor structural symmetry change. Based on a theoretical calculation, this oscillation can be attributed to an unexpectedly softened new phonon mode generated by mixing essential two phonon modes governing the multiferroic (ferroelectric and antiferromagnetic) nature of BiFeO3 in the ground state due to strong coupling with a localized photocarrier. The comprehensive study shows that injection of the localized photocarrier strongly coupled with the lattice vibration mode can simultaneously realize the ultrafast switching of electric dipoles and magnetic interaction at once, even at room temperature, without modifying the long-range lattice structure. Ultrafast control of ferroelectricity and magnetism by light is essential for multifunctional devices. Here, photocarrier injection into multiferroic BiFeO3 thin films can simultaneously realize the ultrafast switching of electric dipoles and magnetic interaction due to the strong coupling between the localized photocarrier and lattice vibrations.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-9"},"PeriodicalIF":7.5000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00698-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43246-024-00698-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Ultrafast control of ferroelectricity and magnetism by light is essential for future development in multiple functioning devices. Here, we demonstrate that the intense and ultrafast photo-modulation of the electric dipole can be realized by photocarrier injection into a multiferroic BiFeO3 thin film using optical pump-probe and second harmonic generation measurements. Results of ultrafast electron diffraction with <100 fs time resolution and theoretical study reveal that the localized photocarrier strongly couples with the lattice structure and becomes the origin for the observed sudden change in the electric dipole. In addition, the subsequent structural dynamics involve a strong oscillation with a frequency of ~3.3 THz despite a poor structural symmetry change. Based on a theoretical calculation, this oscillation can be attributed to an unexpectedly softened new phonon mode generated by mixing essential two phonon modes governing the multiferroic (ferroelectric and antiferromagnetic) nature of BiFeO3 in the ground state due to strong coupling with a localized photocarrier. The comprehensive study shows that injection of the localized photocarrier strongly coupled with the lattice vibration mode can simultaneously realize the ultrafast switching of electric dipoles and magnetic interaction at once, even at room temperature, without modifying the long-range lattice structure. Ultrafast control of ferroelectricity and magnetism by light is essential for multifunctional devices. Here, photocarrier injection into multiferroic BiFeO3 thin films can simultaneously realize the ultrafast switching of electric dipoles and magnetic interaction due to the strong coupling between the localized photocarrier and lattice vibrations.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过结构修饰和光载流子耦合控制多铁BiFeO3的铁电性
光对铁电性和磁性的超快控制对未来多功能器件的发展至关重要。在这里,我们证明了光载流子注入到多铁性BiFeO3薄膜中,利用光泵浦探针和二次谐波产生测量,可以实现电偶极子的强和超快光调制。时间分辨率为<; 100fs的超快电子衍射结果和理论研究表明,局域化光载流子与晶格结构强烈耦合,成为观测到的电偶极子突变的根源。此外,尽管结构对称性变化较差,但随后的结构动力学涉及频率为~3.3太赫兹的强振荡。根据理论计算,这种振荡可以归因于一种意想不到的软化的新声子模式,这种模式是由混合基本的两个声子模式产生的,这些声子模式控制着BiFeO3在基态中的多铁性(铁电性和反铁磁性)性质,这是由于与局域光载流子的强耦合。综合研究表明,注入与晶格振动模式强耦合的局域光载流子,即使在室温下也能同时实现电偶极子和磁相互作用的超快切换,而不改变长程晶格结构。光对铁电性和磁性的超快控制是多功能器件的必要条件。在这里,由于局域光载流子与晶格振动之间的强耦合,将光载流子注入多铁性BiFeO3薄膜中,可以同时实现电偶极子的超快切换和磁相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Communications Materials
Communications Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
12.10
自引率
1.30%
发文量
85
审稿时长
17 weeks
期刊介绍: Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.
期刊最新文献
Device-assisted strategies for drug delivery across the blood-brain barrier to treat glioblastoma. Discovery of giant unit-cell super-structure in the infinite-layer nickelate PrNiO2+x. Enhanced energy storage in relaxor (1-x)Bi0.5Na0.5TiO3-xBaZryTi1-yO3 thin films by morphotropic phase boundary engineering. Regular red-green-blue InGaN quantum wells with In content up to 40% grown on InGaN nanopyramids Grain boundary cracks patching and defect dual passivation with ammonium formate for high-efficiency triple-cation perovskite solar cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1