Shaobing Xiong, Xiaoxiao Zang, Hongbo Wu, Di Li, Sheng Jiang, Liming Ding, Bo Li, Mats Fahlman, Qinye Bao
{"title":"Double-Side Improved Charge Extraction via 2D Perovskite for Efficient Inverted Perovskite Solar Cells","authors":"Shaobing Xiong, Xiaoxiao Zang, Hongbo Wu, Di Li, Sheng Jiang, Liming Ding, Bo Li, Mats Fahlman, Qinye Bao","doi":"10.1016/j.nanoen.2024.110538","DOIUrl":null,"url":null,"abstract":"Modulating perovskite heterointerface is critical to enhance charge extraction and improve photovoltaic performance of perovskite solar cells (PSCs). Herein, 2D perovskite is integrated at double sides of 3D perovskite to concurrently enhance charge extraction at both hole- and electron-selective interfaces, enabling high-performance inverted p-i-n PSCs. Notably, the bottom 2D perovskite forms cascade energetics at 3D perovskite layer and hole transport layer interface for largely diminishing thermionic losses for hole extraction, passivates defects at the bottom heterointerface, and enhances epitaxial crystallization of the upper 3D perovskite film. It is revealed that the top 2D perovskite that improves energetic alignment between 3D perovskite layer and electron transport layer, effectively promotes electron extraction at the top heterointerface. With double-side 2D perovskite modification, the nonradiative recombination losses are significantly suppressed simultaneously at hole- and electron-selective contacts in one device. Consequently, the inverted PSCs with such 2D/3D/2D modification achieve a champion efficiency 25.25% with excellent stability, which remarkably surpasses the efficiency 24.58% of the devices with the widely used 3D/2D heterojunction at the top heterointerface.","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":"29 1","pages":""},"PeriodicalIF":16.8000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.nanoen.2024.110538","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Modulating perovskite heterointerface is critical to enhance charge extraction and improve photovoltaic performance of perovskite solar cells (PSCs). Herein, 2D perovskite is integrated at double sides of 3D perovskite to concurrently enhance charge extraction at both hole- and electron-selective interfaces, enabling high-performance inverted p-i-n PSCs. Notably, the bottom 2D perovskite forms cascade energetics at 3D perovskite layer and hole transport layer interface for largely diminishing thermionic losses for hole extraction, passivates defects at the bottom heterointerface, and enhances epitaxial crystallization of the upper 3D perovskite film. It is revealed that the top 2D perovskite that improves energetic alignment between 3D perovskite layer and electron transport layer, effectively promotes electron extraction at the top heterointerface. With double-side 2D perovskite modification, the nonradiative recombination losses are significantly suppressed simultaneously at hole- and electron-selective contacts in one device. Consequently, the inverted PSCs with such 2D/3D/2D modification achieve a champion efficiency 25.25% with excellent stability, which remarkably surpasses the efficiency 24.58% of the devices with the widely used 3D/2D heterojunction at the top heterointerface.
期刊介绍:
Nano Energy is a multidisciplinary, rapid-publication forum of original peer-reviewed contributions on the science and engineering of nanomaterials and nanodevices used in all forms of energy harvesting, conversion, storage, utilization and policy. Through its mixture of articles, reviews, communications, research news, and information on key developments, Nano Energy provides a comprehensive coverage of this exciting and dynamic field which joins nanoscience and nanotechnology with energy science. The journal is relevant to all those who are interested in nanomaterials solutions to the energy problem.
Nano Energy publishes original experimental and theoretical research on all aspects of energy-related research which utilizes nanomaterials and nanotechnology. Manuscripts of four types are considered: review articles which inform readers of the latest research and advances in energy science; rapid communications which feature exciting research breakthroughs in the field; full-length articles which report comprehensive research developments; and news and opinions which comment on topical issues or express views on the developments in related fields.