Equally high efficiencies of organic solar cells processed from different solvents reveal key factors for morphology control

IF 49.7 1区 材料科学 Q1 ENERGY & FUELS Nature Energy Pub Date : 2024-12-04 DOI:10.1038/s41560-024-01678-5
Rui Zhang, Haiyang Chen, Tonghui Wang, Libor Kobera, Lilin He, Yuting Huang, Junyuan Ding, Ben Zhang, Azzaya Khasbaatar, Sadisha Nanayakkara, Jialei Zheng, Weijie Chen, Ying Diao, Sabina Abbrent, Jiri Brus, Aidan H. Coffey, Chenhui Zhu, Heng Liu, Xinhui Lu, Qing Jiang, Veaceslav Coropceanu, Jean-Luc Brédas, Yongfang Li, Yaowen Li, Feng Gao
{"title":"Equally high efficiencies of organic solar cells processed from different solvents reveal key factors for morphology control","authors":"Rui Zhang, Haiyang Chen, Tonghui Wang, Libor Kobera, Lilin He, Yuting Huang, Junyuan Ding, Ben Zhang, Azzaya Khasbaatar, Sadisha Nanayakkara, Jialei Zheng, Weijie Chen, Ying Diao, Sabina Abbrent, Jiri Brus, Aidan H. Coffey, Chenhui Zhu, Heng Liu, Xinhui Lu, Qing Jiang, Veaceslav Coropceanu, Jean-Luc Brédas, Yongfang Li, Yaowen Li, Feng Gao","doi":"10.1038/s41560-024-01678-5","DOIUrl":null,"url":null,"abstract":"<p>The power conversion efficiency of organic solar cells (OSCs) is exceeding 20%, an advance in which morphology optimization has played a significant role. It is generally accepted that the processing solvent (or solvent mixture) can help optimize morphology, impacting the OSC efficiency. Here we develop OSCs that show strong tolerance to a range of processing solvents, with all devices delivering high power conversion efficiencies around 19%. By investigating the solution states, the film formation dynamics and the characteristics of the processed films both experimentally and computationally, we identify the key factors that control morphology, that is, the interactions between the side chains of the acceptor materials and the solvent as well as the interactions between the donor and acceptor materials. Our work provides new understanding on the long-standing question of morphology control and effective guides to design OSC materials towards practical applications, where green solvents are required for large-scale processing.</p>","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"137 1","pages":""},"PeriodicalIF":49.7000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41560-024-01678-5","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The power conversion efficiency of organic solar cells (OSCs) is exceeding 20%, an advance in which morphology optimization has played a significant role. It is generally accepted that the processing solvent (or solvent mixture) can help optimize morphology, impacting the OSC efficiency. Here we develop OSCs that show strong tolerance to a range of processing solvents, with all devices delivering high power conversion efficiencies around 19%. By investigating the solution states, the film formation dynamics and the characteristics of the processed films both experimentally and computationally, we identify the key factors that control morphology, that is, the interactions between the side chains of the acceptor materials and the solvent as well as the interactions between the donor and acceptor materials. Our work provides new understanding on the long-standing question of morphology control and effective guides to design OSC materials towards practical applications, where green solvents are required for large-scale processing.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用不同溶剂加工的有机太阳能电池效率同样高,这揭示了形貌控制的关键因素
有机太阳能电池(OSCs)的功率转换效率超过20%,其中形态优化发挥了重要作用。人们普遍认为,加工溶剂(或溶剂混合物)有助于优化形貌,从而影响OSC效率。在这里,我们开发的OSCs对一系列加工溶剂具有很强的耐受性,所有器件的功率转换效率都在19%左右。通过实验和计算研究溶液状态、成膜动力学和加工膜的特性,我们确定了控制形貌的关键因素,即受体材料侧链与溶剂之间的相互作用以及供体和受体材料之间的相互作用。我们的工作为长期存在的形态控制问题提供了新的理解,并为OSC材料的实际应用设计提供了有效的指导,其中大规模加工需要绿色溶剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Energy
Nature Energy Energy-Energy Engineering and Power Technology
CiteScore
75.10
自引率
1.10%
发文量
193
期刊介绍: Nature Energy is a monthly, online-only journal committed to showcasing the most impactful research on energy, covering everything from its generation and distribution to the societal implications of energy technologies and policies. With a focus on exploring all facets of the ongoing energy discourse, Nature Energy delves into topics such as energy generation, storage, distribution, management, and the societal impacts of energy technologies and policies. Emphasizing studies that push the boundaries of knowledge and contribute to the development of next-generation solutions, the journal serves as a platform for the exchange of ideas among stakeholders at the forefront of the energy sector. Maintaining the hallmark standards of the Nature brand, Nature Energy boasts a dedicated team of professional editors, a rigorous peer-review process, meticulous copy-editing and production, rapid publication times, and editorial independence. In addition to original research articles, Nature Energy also publishes a range of content types, including Comments, Perspectives, Reviews, News & Views, Features, and Correspondence, covering a diverse array of disciplines relevant to the field of energy.
期刊最新文献
Power price stability and the insurance value of renewable technologies Improving the operational stability of electrochemical CO2 reduction reaction via salt precipitation understanding and management Citizen-financed solar projects A microscopic look at degradation Lithium Triangle supply chains
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1