The First Kr-Selective Carbon Molecular Sieve for Inverse Adsorption of Krypton Over Xenon at Ambient Temperature

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2024-12-04 DOI:10.1002/adma.202409474
Fuqiang Chen, Fang Zheng, Xinlei Huang, Zhe Chu, Haoran Sun, Liu Yang, Qiwei Yang, Zhiguo Zhang, Qilong Ren, Zongbi Bao
{"title":"The First Kr-Selective Carbon Molecular Sieve for Inverse Adsorption of Krypton Over Xenon at Ambient Temperature","authors":"Fuqiang Chen, Fang Zheng, Xinlei Huang, Zhe Chu, Haoran Sun, Liu Yang, Qiwei Yang, Zhiguo Zhang, Qilong Ren, Zongbi Bao","doi":"10.1002/adma.202409474","DOIUrl":null,"url":null,"abstract":"The efficient adsorption-based separation of krypton (Kr) and xenon (Xe) is of paramount importance but is challenged by their similar physicochemical properties. While carbon adsorbents are theoretically promising for Kr/Xe sieving, practical success has remained elusive. Here, a series of ultramicroporous carbon molecular sieves synthesized from sucrose-derived hydrochar is reported. The study employs careful characterization and controlled thermal pyrolysis to tailor ultramicropore formation and elucidate the evolution of the carbon framework. The leading material, C-Suc-750, has an ideal pore size of ≈4.0 Å. In particular, C-Suc-750 has achieved a remarkable Kr/Xe uptake ratio of 39.3 at ambient conditions, setting a new benchmark for selective Kr adsorption and molecular sieving of Kr/Xe. Breakthrough experiments further confirm the superior molecular sieving performance of C-Suc-750, highlighting its potential for Kr recovery in nuclear waste treatment. Moreover, molecular dynamics (MD) simulations demonstrate the critical role of narrow slit-pore of the carbon molecular sieve in molecular sieving separation of Kr/Xe, providing insights into the mechanism driving this selectivity.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"14 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202409474","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The efficient adsorption-based separation of krypton (Kr) and xenon (Xe) is of paramount importance but is challenged by their similar physicochemical properties. While carbon adsorbents are theoretically promising for Kr/Xe sieving, practical success has remained elusive. Here, a series of ultramicroporous carbon molecular sieves synthesized from sucrose-derived hydrochar is reported. The study employs careful characterization and controlled thermal pyrolysis to tailor ultramicropore formation and elucidate the evolution of the carbon framework. The leading material, C-Suc-750, has an ideal pore size of ≈4.0 Å. In particular, C-Suc-750 has achieved a remarkable Kr/Xe uptake ratio of 39.3 at ambient conditions, setting a new benchmark for selective Kr adsorption and molecular sieving of Kr/Xe. Breakthrough experiments further confirm the superior molecular sieving performance of C-Suc-750, highlighting its potential for Kr recovery in nuclear waste treatment. Moreover, molecular dynamics (MD) simulations demonstrate the critical role of narrow slit-pore of the carbon molecular sieve in molecular sieving separation of Kr/Xe, providing insights into the mechanism driving this selectivity.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
Constructing High-Performance Composite Epoxy Resins: Interfacial π-π Stacking Interactions-Driven Physical Rolling Behavior of Silica Microspheres A Mitochondrion-Targeting Piezoelectric Nanosystem for the Treatment of Erectile Dysfunction via Autophagy Regulation Recent Progress and Challenges of Li-Rich Mn-Based Cathode Materials for Solid-State Lithium-Ion Batteries Matrix Viscoelasticity Controls Differentiation of Human Blood Vessel Organoids into Arterioles and Promotes Neovascularization in Myocardial Infarction Designing Silk Biomaterials toward Better Future Healthcare: The Development and Application of Silk-Based Implantable Electronic Devices in Clinical Diagnosis and Therapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1