Zehua Han, Changli Ma, Hong Zhu, Tengfei Cui, Taisen Zuo, He Cheng
{"title":"The smearing function for a multi-slit very small angle neutron scattering instrument","authors":"Zehua Han, Changli Ma, Hong Zhu, Tengfei Cui, Taisen Zuo, He Cheng","doi":"10.1107/S1600576724009014","DOIUrl":null,"url":null,"abstract":"<p>Besides traditional pinhole geometry, the multi-slit very small angle neutron scattering instrument (MS-VSANS) at the China Spallation Neutron Source also utilizes a multi-slit collimation system to focus neutrons. Using the special focusing structures, the minimum scattering vector magnitude (<i>q)</i> can reach 0.00028 Å<sup>−1</sup>. The special structures also lead to a significantly different smearing function. By comparing the results of theoretical calculations with experimental data, we have validated the feasibility of a smearing method based on a mature theory for slit smearing. We use the weight-averaged intensity of neutron wavelength as a representative to evaluate the effect from a broad wavelength distribution, concentrating on the effect from the geometry of the multi-slit structures and the detector. The consistency of the theoretical calculation of the smearing function with experimental VSANS scattering profiles for a series of polystyrene standards of different diameters proves the feasibility of the smearing method. This marks the inaugural use of real experimental data from an instrument employing a multi-slit collimation system.</p>","PeriodicalId":48737,"journal":{"name":"Journal of Applied Crystallography","volume":"57 6","pages":"1772-1779"},"PeriodicalIF":5.2000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Crystallography","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1107/S1600576724009014","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Besides traditional pinhole geometry, the multi-slit very small angle neutron scattering instrument (MS-VSANS) at the China Spallation Neutron Source also utilizes a multi-slit collimation system to focus neutrons. Using the special focusing structures, the minimum scattering vector magnitude (q) can reach 0.00028 Å−1. The special structures also lead to a significantly different smearing function. By comparing the results of theoretical calculations with experimental data, we have validated the feasibility of a smearing method based on a mature theory for slit smearing. We use the weight-averaged intensity of neutron wavelength as a representative to evaluate the effect from a broad wavelength distribution, concentrating on the effect from the geometry of the multi-slit structures and the detector. The consistency of the theoretical calculation of the smearing function with experimental VSANS scattering profiles for a series of polystyrene standards of different diameters proves the feasibility of the smearing method. This marks the inaugural use of real experimental data from an instrument employing a multi-slit collimation system.
期刊介绍:
Many research topics in condensed matter research, materials science and the life sciences make use of crystallographic methods to study crystalline and non-crystalline matter with neutrons, X-rays and electrons. Articles published in the Journal of Applied Crystallography focus on these methods and their use in identifying structural and diffusion-controlled phase transformations, structure-property relationships, structural changes of defects, interfaces and surfaces, etc. Developments of instrumentation and crystallographic apparatus, theory and interpretation, numerical analysis and other related subjects are also covered. The journal is the primary place where crystallographic computer program information is published.