Geetu P Paul, Virivinti Nagajyothi, Kishalay Mitra
{"title":"Integration of Neural Networks and First-Principles Model for Optimizing l-Lactide Branched Polymerization.","authors":"Geetu P Paul, Virivinti Nagajyothi, Kishalay Mitra","doi":"10.1021/acs.jctc.4c01347","DOIUrl":null,"url":null,"abstract":"<p><p>Addressing the growing demand for sustainable materials, this research paves the way for the efficient consumption and sustainable production of branched polylactide (PLA). A novel hybrid modeling approach combines first-principles (FP) model with artificial neural network (ANN) for ring-opening polymerization (ROP). The hybrid ANN, trained with FP model data, demonstrated optimal performance with a hidden layer of 20 neurons, achieving a root mean square error (RMSE) of 0.004 and a regression coefficient (<i>R</i><sup>2</sup>) of 0.99. The hybrid model accurately predicted key polymer properties, including average molecular weights (Mn and Mw), polydispersity index (PDI), degree of branching (DB), monomer conversion, and polymerization time. Validation was performed on various branched PLA compositions (PLLH80, PLLH94, and PLLH97). Multiobjective optimization (MOO) using NSGA-II showed strong agreement between FP model and hybrid ANN across six case studies, highlighting their effectiveness in predicting polymerization outcomes.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":"11058-11067"},"PeriodicalIF":5.7000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c01347","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Addressing the growing demand for sustainable materials, this research paves the way for the efficient consumption and sustainable production of branched polylactide (PLA). A novel hybrid modeling approach combines first-principles (FP) model with artificial neural network (ANN) for ring-opening polymerization (ROP). The hybrid ANN, trained with FP model data, demonstrated optimal performance with a hidden layer of 20 neurons, achieving a root mean square error (RMSE) of 0.004 and a regression coefficient (R2) of 0.99. The hybrid model accurately predicted key polymer properties, including average molecular weights (Mn and Mw), polydispersity index (PDI), degree of branching (DB), monomer conversion, and polymerization time. Validation was performed on various branched PLA compositions (PLLH80, PLLH94, and PLLH97). Multiobjective optimization (MOO) using NSGA-II showed strong agreement between FP model and hybrid ANN across six case studies, highlighting their effectiveness in predicting polymerization outcomes.
期刊介绍:
The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.