Spatial prediction of human brucellosis susceptibility using an explainable optimized adaptive neuro fuzzy inference system.

IF 2.1 3区 医学 Q2 PARASITOLOGY Acta tropica Pub Date : 2024-12-01 Epub Date: 2024-11-30 DOI:10.1016/j.actatropica.2024.107483
Ali Jafari, Ali Asghar Alesheikh, Iman Zandi, Aynaz Lotfata
{"title":"Spatial prediction of human brucellosis susceptibility using an explainable optimized adaptive neuro fuzzy inference system.","authors":"Ali Jafari, Ali Asghar Alesheikh, Iman Zandi, Aynaz Lotfata","doi":"10.1016/j.actatropica.2024.107483","DOIUrl":null,"url":null,"abstract":"<p><p>Brucellosis, a zoonotic disease caused by Brucella bacteria, poses significant risks to human, livestock, and wildlife health, alongside economic losses from livestock morbidity and mortality. This study improves Human Brucellosis Susceptibility Mapping (HBSM) by integrating the Adaptive Neuro-Fuzzy Inference System (ANFIS) with meta-heuristic algorithms, including Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). Boruta-XGBoost identified key covariates, while VIF and tolerance tests addressed collinearity, and Shapley additive explanation (SHAP) values enhanced model interpretability. In Mazandaran province, Iran (2012-2018), the hybrid ANFIS-PSO model demonstrated superior performance (RMSE: 0.5076; R<sup>2</sup>: 0.6980). SHAP analysis highlighted mean elevation, NDVI, and relative humidity as the most impactful covariates, while max evaporation and precipitation had minimal influence. ANFIS-based models outperformed Support Vector Regression (SVR), offering a robust framework for brucellosis control. This approach enables effective interventions and resource allocation, with potential for improvement through advanced algorithms and greater interpretability.</p>","PeriodicalId":7240,"journal":{"name":"Acta tropica","volume":" ","pages":"107483"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta tropica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.actatropica.2024.107483","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PARASITOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Brucellosis, a zoonotic disease caused by Brucella bacteria, poses significant risks to human, livestock, and wildlife health, alongside economic losses from livestock morbidity and mortality. This study improves Human Brucellosis Susceptibility Mapping (HBSM) by integrating the Adaptive Neuro-Fuzzy Inference System (ANFIS) with meta-heuristic algorithms, including Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). Boruta-XGBoost identified key covariates, while VIF and tolerance tests addressed collinearity, and Shapley additive explanation (SHAP) values enhanced model interpretability. In Mazandaran province, Iran (2012-2018), the hybrid ANFIS-PSO model demonstrated superior performance (RMSE: 0.5076; R2: 0.6980). SHAP analysis highlighted mean elevation, NDVI, and relative humidity as the most impactful covariates, while max evaporation and precipitation had minimal influence. ANFIS-based models outperformed Support Vector Regression (SVR), offering a robust framework for brucellosis control. This approach enables effective interventions and resource allocation, with potential for improvement through advanced algorithms and greater interpretability.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta tropica
Acta tropica 医学-寄生虫学
CiteScore
5.40
自引率
11.10%
发文量
383
审稿时长
37 days
期刊介绍: Acta Tropica, is an international journal on infectious diseases that covers public health sciences and biomedical research with particular emphasis on topics relevant to human and animal health in the tropics and the subtropics.
期刊最新文献
Two new myxozoan parasites, Myxobolus mayarum n. sp. and Kudoa mayarum n. sp., infecting the neotropical fish Mayan Cichlid, Mayaheros urophthalmus (Günther, 1862) in the Yucatán Peninsula, Mexico. Feeding sources of mosquitoes in Galapagos Islands: a potential threat to wildlife conservation. Intraspecific genetic variation in the lymphatic filariasis vector Mansonia dives (Diptera: Culicidae) in Thailand: Hidden species or genetically divergent populations? Wing geometric morphometrics is effective to separate sand fly species (Diptera, Psychodidae, Phlebotominae) related with leishmaniasis transmission in Mexico. Molecular and serological investigation of Brucella species in kennel and farm dogs in Iran.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1