NMR-based metabolomics combined with metabolic pathway analysis reveals metabolic heterogeneity of colorectal cancer tissue at different anatomical locations and stages.
Rongzhi Cai, LiXin Ke, Yan Zhao, Jiayun Zhao, Huanian Zhang, Peie Zheng, Lijing Xin, Changchun Ma, Yan Lin
{"title":"NMR-based metabolomics combined with metabolic pathway analysis reveals metabolic heterogeneity of colorectal cancer tissue at different anatomical locations and stages.","authors":"Rongzhi Cai, LiXin Ke, Yan Zhao, Jiayun Zhao, Huanian Zhang, Peie Zheng, Lijing Xin, Changchun Ma, Yan Lin","doi":"10.1002/ijc.35273","DOIUrl":null,"url":null,"abstract":"<p><p>Colorectal cancer (CRC) still remains the leading cause of cancer death worldwide. This study aimed to profile the metabolic differences of colorectal cancer tissues (CCT) at different stages and sites, as compared with their distant noncancerous tissues (DNT), to investigate the temporal and spatial heterogeneities of metabolic characterization. Our NMR-based metabolomics fingerprinting revealed that many of the metabolite levels were significantly altered in CCT compared to DNT and esophageal cancer tissues, indicating deregulations of glucose metabolism, one-carbon metabolism, glutamine metabolism, amino acid metabolism, fatty acid metabolism, TCA cycle, choline metabolism, and so forth. A total of five biomarker metabolites, including glucose, glutamate, alanine, valine and histidine, were identified to distinguish between early and advanced stages of CCT. Metabolites that distinguish the different anatomical sites of CCT include glucose, glycerol, glutamine, inositol, succinate, and citrate. Those significant metabolic differences in CRC tissues at different pathological stages and sites suggested temporal and spatial heterogeneities of metabolic characterization in CCT, providing a metabolic foundation for further study on biofluid metabolism in CRC early detection.</p>","PeriodicalId":180,"journal":{"name":"International Journal of Cancer","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/ijc.35273","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Colorectal cancer (CRC) still remains the leading cause of cancer death worldwide. This study aimed to profile the metabolic differences of colorectal cancer tissues (CCT) at different stages and sites, as compared with their distant noncancerous tissues (DNT), to investigate the temporal and spatial heterogeneities of metabolic characterization. Our NMR-based metabolomics fingerprinting revealed that many of the metabolite levels were significantly altered in CCT compared to DNT and esophageal cancer tissues, indicating deregulations of glucose metabolism, one-carbon metabolism, glutamine metabolism, amino acid metabolism, fatty acid metabolism, TCA cycle, choline metabolism, and so forth. A total of five biomarker metabolites, including glucose, glutamate, alanine, valine and histidine, were identified to distinguish between early and advanced stages of CCT. Metabolites that distinguish the different anatomical sites of CCT include glucose, glycerol, glutamine, inositol, succinate, and citrate. Those significant metabolic differences in CRC tissues at different pathological stages and sites suggested temporal and spatial heterogeneities of metabolic characterization in CCT, providing a metabolic foundation for further study on biofluid metabolism in CRC early detection.
期刊介绍:
The International Journal of Cancer (IJC) is the official journal of the Union for International Cancer Control—UICC; it appears twice a month. IJC invites submission of manuscripts under a broad scope of topics relevant to experimental and clinical cancer research and publishes original Research Articles and Short Reports under the following categories:
-Cancer Epidemiology-
Cancer Genetics and Epigenetics-
Infectious Causes of Cancer-
Innovative Tools and Methods-
Molecular Cancer Biology-
Tumor Immunology and Microenvironment-
Tumor Markers and Signatures-
Cancer Therapy and Prevention