Yejin Shim, Boyeong Kim, Yumin Choi, Sung-Hwan Cho, Yeonjoon Kim, Suk-Hwan Kim, Yehyun Yim, Kiyoon Kang, Nam-Chon Paek
{"title":"Rice OsDof12 enhances tolerance to drought stress by activating the phenylpropanoid pathway.","authors":"Yejin Shim, Boyeong Kim, Yumin Choi, Sung-Hwan Cho, Yeonjoon Kim, Suk-Hwan Kim, Yehyun Yim, Kiyoon Kang, Nam-Chon Paek","doi":"10.1111/tpj.17175","DOIUrl":null,"url":null,"abstract":"<p><p>Drought is a major abiotic stress that severely affects cereal production worldwide. Although several genes have been identified that enhance the ability of rice to withstand drought stress, further research is needed to fully understand the molecular mechanisms underlying the response to drought stress. Our study showed that overexpression of rice DNA binding with one finger 12 (OsDof12) enhances tolerance to drought stress. Rice plants overexpressing OsDof12 (OsDof12-OE) displayed significantly higher tolerance to drought stress than the parental japonica rice \"Dongjin\". Transcriptome analysis revealed that many genes involved in phenylpropanoid biosynthesis were upregulated in OsDof12-OE plants, including phenylalanine ammonia-lyase 4 (OsPAL4), OsPAL6, cinnamyl alcohol dehydrogenase 6 (CAD6), and 4-coumarate-coA ligase like 6 (4CLL6). Accordingly, this transcriptional alteration led to the substantial accumulation of phenolic compounds, such as sinapic acids, in the leaves of OsDof12-OE plants, effectively lowering the levels of reactive oxygen species. Notably, OsDof12 bound to the AAAG-rich core sequence of the OsPAL4 promoter and promoted transcription. In addition, GIGANTEA (OsGI) interacts with OsDof12 in the nucleus and attenuates the transactivation activity of OsDof12 on OsPAL4. Our findings reveal a novel role for OsDof12 in promoting phenylpropanoid-mediated tolerance to drought stress.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":" ","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Journal","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/tpj.17175","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Drought is a major abiotic stress that severely affects cereal production worldwide. Although several genes have been identified that enhance the ability of rice to withstand drought stress, further research is needed to fully understand the molecular mechanisms underlying the response to drought stress. Our study showed that overexpression of rice DNA binding with one finger 12 (OsDof12) enhances tolerance to drought stress. Rice plants overexpressing OsDof12 (OsDof12-OE) displayed significantly higher tolerance to drought stress than the parental japonica rice "Dongjin". Transcriptome analysis revealed that many genes involved in phenylpropanoid biosynthesis were upregulated in OsDof12-OE plants, including phenylalanine ammonia-lyase 4 (OsPAL4), OsPAL6, cinnamyl alcohol dehydrogenase 6 (CAD6), and 4-coumarate-coA ligase like 6 (4CLL6). Accordingly, this transcriptional alteration led to the substantial accumulation of phenolic compounds, such as sinapic acids, in the leaves of OsDof12-OE plants, effectively lowering the levels of reactive oxygen species. Notably, OsDof12 bound to the AAAG-rich core sequence of the OsPAL4 promoter and promoted transcription. In addition, GIGANTEA (OsGI) interacts with OsDof12 in the nucleus and attenuates the transactivation activity of OsDof12 on OsPAL4. Our findings reveal a novel role for OsDof12 in promoting phenylpropanoid-mediated tolerance to drought stress.
期刊介绍:
Publishing the best original research papers in all key areas of modern plant biology from the world"s leading laboratories, The Plant Journal provides a dynamic forum for this ever growing international research community.
Plant science research is now at the forefront of research in the biological sciences, with breakthroughs in our understanding of fundamental processes in plants matching those in other organisms. The impact of molecular genetics and the availability of model and crop species can be seen in all aspects of plant biology. For publication in The Plant Journal the research must provide a highly significant new contribution to our understanding of plants and be of general interest to the plant science community.