Linh Thuy Nguyen, Pinelopi Moutesidi, Jörg Ziegler, Anike Glasneck, Solmaz Khosravi, Steffen Abel, Götz Hensel, Karin Krupinska, Klaus Humbeck
{"title":"WHIRLY1 regulates aliphatic glucosinolate biosynthesis in early seedling development of Arabidopsis.","authors":"Linh Thuy Nguyen, Pinelopi Moutesidi, Jörg Ziegler, Anike Glasneck, Solmaz Khosravi, Steffen Abel, Götz Hensel, Karin Krupinska, Klaus Humbeck","doi":"10.1111/tpj.17181","DOIUrl":null,"url":null,"abstract":"<p><p>WHIRLY1 belongs to a family of plant-specific transcription factors capable of binding DNA or RNA in all three plant cell compartments that contain genetic materials. In Arabidopsis thaliana, WHIRLY1 has been studied at the later stages of plant development, including flowering and leaf senescence, as well as in biotic and abiotic stress responses. In this study, WHIRLY1 knockout mutants of A. thaliana were prepared by CRISPR/Cas9-mediated genome editing to investigate the role of WHIRLY1 during early seedling development. The loss-of-function of WHIRLY1 in 5-day-old seedlings did not cause differences in the phenotype and the photosynthetic performance of the emerging cotyledons compared with the wild type. Nevertheless, comparative RNA sequencing analysis revealed that the knockout of WHIRLY1 affected the expression of a small but specific set of genes during this critical phase of development. About 110 genes were found to be significantly deregulated in the knockout mutant, wherein several genes involved in the early steps of aliphatic glucosinolate (GSL) biosynthesis were suppressed compared with wild-type plants. The downregulation of these genes in WHIRLY1 knockout lines led to decreased GSL contents in seedlings and in seeds. Since GSL catabolism mediated by myrosinases was not altered during seed-to-seedling transition, the results suggest that AtWHIRLY1 plays a major role in modulation of aliphatic GSL biosynthesis during early seedling development. In addition, phylogenetic analysis revealed a coincidence between the evolution of methionine-derived aliphatic GSLs and the addition of a new WHIRLY in core families of the plant order Brassicales.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":" ","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Journal","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/tpj.17181","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
WHIRLY1 belongs to a family of plant-specific transcription factors capable of binding DNA or RNA in all three plant cell compartments that contain genetic materials. In Arabidopsis thaliana, WHIRLY1 has been studied at the later stages of plant development, including flowering and leaf senescence, as well as in biotic and abiotic stress responses. In this study, WHIRLY1 knockout mutants of A. thaliana were prepared by CRISPR/Cas9-mediated genome editing to investigate the role of WHIRLY1 during early seedling development. The loss-of-function of WHIRLY1 in 5-day-old seedlings did not cause differences in the phenotype and the photosynthetic performance of the emerging cotyledons compared with the wild type. Nevertheless, comparative RNA sequencing analysis revealed that the knockout of WHIRLY1 affected the expression of a small but specific set of genes during this critical phase of development. About 110 genes were found to be significantly deregulated in the knockout mutant, wherein several genes involved in the early steps of aliphatic glucosinolate (GSL) biosynthesis were suppressed compared with wild-type plants. The downregulation of these genes in WHIRLY1 knockout lines led to decreased GSL contents in seedlings and in seeds. Since GSL catabolism mediated by myrosinases was not altered during seed-to-seedling transition, the results suggest that AtWHIRLY1 plays a major role in modulation of aliphatic GSL biosynthesis during early seedling development. In addition, phylogenetic analysis revealed a coincidence between the evolution of methionine-derived aliphatic GSLs and the addition of a new WHIRLY in core families of the plant order Brassicales.
期刊介绍:
Publishing the best original research papers in all key areas of modern plant biology from the world"s leading laboratories, The Plant Journal provides a dynamic forum for this ever growing international research community.
Plant science research is now at the forefront of research in the biological sciences, with breakthroughs in our understanding of fundamental processes in plants matching those in other organisms. The impact of molecular genetics and the availability of model and crop species can be seen in all aspects of plant biology. For publication in The Plant Journal the research must provide a highly significant new contribution to our understanding of plants and be of general interest to the plant science community.