Algae-synthesized cerium oxide nanoparticles for antibiotic degradation in water and subsequent bioenergy production.

IF 2.6 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY 3 Biotech Pub Date : 2024-12-01 Epub Date: 2024-11-29 DOI:10.1007/s13205-024-04134-z
Monika Dubey, Jyoti Sharma, Richa Krishna, Vipin Chawla, Subhasha Nigam, Monika Joshi
{"title":"Algae-synthesized cerium oxide nanoparticles for antibiotic degradation in water and subsequent bioenergy production.","authors":"Monika Dubey, Jyoti Sharma, Richa Krishna, Vipin Chawla, Subhasha Nigam, Monika Joshi","doi":"10.1007/s13205-024-04134-z","DOIUrl":null,"url":null,"abstract":"<p><p>In the present study, CeO<sub>2</sub> nanoparticles were synthesized using one-pot green route with high yield using microalgae <i>Chlorella sorokiniana.</i> The synthesized CeO<sub>2</sub> nanoparticles (CeO<sub>2</sub>-np) exhibited rapid photocatalytic degradation 98.2% of doxycycline (DC) (20 mg/L) in only 30 min under visible light at pH7 in water. It was encouraging that CeO<sub>2</sub>-np did not demonstrate a loss of photocatalytic activity up to five repeated cycles, confirming its stability during the degradation process. Moreover, cytotoxicity evaluation of CeO<sub>2</sub>-nps on the green alga <i>Chlorella sorokiniana</i> advocated its non-toxic nature by supporting algal growth (0.52 g/L biomass<i>)</i> with 13% total lipids after 12 days in DC treated water. Ultimately, the produced algal biomass could be further utilized as a feedstock of biofuel production.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s13205-024-04134-z.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":"14 12","pages":"318"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11607241/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"3 Biotech","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13205-024-04134-z","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In the present study, CeO2 nanoparticles were synthesized using one-pot green route with high yield using microalgae Chlorella sorokiniana. The synthesized CeO2 nanoparticles (CeO2-np) exhibited rapid photocatalytic degradation 98.2% of doxycycline (DC) (20 mg/L) in only 30 min under visible light at pH7 in water. It was encouraging that CeO2-np did not demonstrate a loss of photocatalytic activity up to five repeated cycles, confirming its stability during the degradation process. Moreover, cytotoxicity evaluation of CeO2-nps on the green alga Chlorella sorokiniana advocated its non-toxic nature by supporting algal growth (0.52 g/L biomass) with 13% total lipids after 12 days in DC treated water. Ultimately, the produced algal biomass could be further utilized as a feedstock of biofuel production.

Supplementary information: The online version contains supplementary material available at 10.1007/s13205-024-04134-z.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
藻类合成的氧化铈纳米颗粒用于水中抗生素降解和随后的生物能源生产。
本研究以小球藻为原料,采用一锅绿法高产地合成了CeO2纳米颗粒。在所合成的CeO2纳米颗粒(CeO2-np)在pH7的可见光条件下,在30 min内快速光催化降解98.2%的强力霉素(DC) (20 mg/L)。令人鼓舞的是,CeO2-np在5个重复循环中没有表现出光催化活性的损失,证实了其在降解过程中的稳定性。此外,CeO2-nps对小球藻(Chlorella sorokiniana)的细胞毒性评价表明,CeO2-nps在DC处理后的水中12天后支持藻类生长(0.52 g/L生物量),总脂含量为13%。最终,生产的藻类生物量可以进一步用作生物燃料生产的原料。补充信息:在线版本包含补充资料,提供地址为10.1007/s13205-024-04134-z。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
3 Biotech
3 Biotech Agricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
6.00
自引率
0.00%
发文量
314
期刊介绍: 3 Biotech publishes the results of the latest research related to the study and application of biotechnology to: - Medicine and Biomedical Sciences - Agriculture - The Environment The focus on these three technology sectors recognizes that complete Biotechnology applications often require a combination of techniques. 3 Biotech not only presents the latest developments in biotechnology but also addresses the problems and benefits of integrating a variety of techniques for a particular application. 3 Biotech will appeal to scientists and engineers in both academia and industry focused on the safe and efficient application of Biotechnology to Medicine, Agriculture and the Environment.
期刊最新文献
Biocontrol efficacy of native Metarhizium rileyi (Hypocreales: Clavicipitaceae) isolates against Spodoptera litura (F) (Lepidoptera: Noctuidae) and in silico effect of the secondary metabolites against the virulent proteins of the insect. Evaluation of a chloroquine hydrogel for topical treatment of leishmaniasis in BALB/c mice infected with Leishmania (L.) amazonensis. Exploring the therapeutic potential of oleanolic acid and its derivatives in cancer treatment: a comprehensive review. Potential of Streptomyces rochei 8ER183 for poly(lactic acid)-degrading enzyme production, biodegradative capability, and its whole-genome sequence characterization. Relevance of proteomics and metabolomics approaches to overview the tumorigenesis and better management of cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1