{"title":"Leveraging bacterial laccases to facilitate the decomposition of xenobiotic compounds: a review.","authors":"Kalyanee Bera, Debalina Bhattacharya, Mainak Mukhopadhyay","doi":"10.1007/s13205-024-04152-x","DOIUrl":null,"url":null,"abstract":"<p><p>Xenobiotic compounds are artificial substances that are essential in our lives. These substances have a negative impact on the environment because they are long-lasting and biodegrade slowly or not at all in ecosystems. When xenobiotics leak into the ecosystem, they enter the food chain and negatively impact animals' and people's health across all trophic levels. Moreover, these pollutants have toxic, mutagenic, carcinogenic, and teratogenic effects on all living organisms. They can affect humans in ways such as brain and prostate gland abnormalities, abnormalities of children's behavior, skin disorders, liver issues, immune system impairment, and endocrine system distribution. Consequently, it is essential to remove harmful, non-biodegradable xenobiotics from the ecosystem. Degradation of these chemicals hence requires immediate attention and awareness. The physical-chemical methods for removing the pollutants are costly. Bioremediation is a concept that uses organisms to control the environment faster and with less labor. Bacterial laccase-mediated bioremediation offers inexpensive, environmentaly sustainable, and potential degradation mechanisms for different recalcitrant chemicals. At the high temperature, high pH, contact time, and concentration, bacterial laccase can degrade the xenobiotic compounds. After degradation, convert them into low-toxic, non-hazardous substances in the environment by oxidation, reduction, elimination, and ring-opening processes. The aspects of this review article are bacterial laccase-mediated xenobiotic compound degradation.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":"14 12","pages":"317"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11604876/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"3 Biotech","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13205-024-04152-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Xenobiotic compounds are artificial substances that are essential in our lives. These substances have a negative impact on the environment because they are long-lasting and biodegrade slowly or not at all in ecosystems. When xenobiotics leak into the ecosystem, they enter the food chain and negatively impact animals' and people's health across all trophic levels. Moreover, these pollutants have toxic, mutagenic, carcinogenic, and teratogenic effects on all living organisms. They can affect humans in ways such as brain and prostate gland abnormalities, abnormalities of children's behavior, skin disorders, liver issues, immune system impairment, and endocrine system distribution. Consequently, it is essential to remove harmful, non-biodegradable xenobiotics from the ecosystem. Degradation of these chemicals hence requires immediate attention and awareness. The physical-chemical methods for removing the pollutants are costly. Bioremediation is a concept that uses organisms to control the environment faster and with less labor. Bacterial laccase-mediated bioremediation offers inexpensive, environmentaly sustainable, and potential degradation mechanisms for different recalcitrant chemicals. At the high temperature, high pH, contact time, and concentration, bacterial laccase can degrade the xenobiotic compounds. After degradation, convert them into low-toxic, non-hazardous substances in the environment by oxidation, reduction, elimination, and ring-opening processes. The aspects of this review article are bacterial laccase-mediated xenobiotic compound degradation.
3 BiotechAgricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
6.00
自引率
0.00%
发文量
314
期刊介绍:
3 Biotech publishes the results of the latest research related to the study and application of biotechnology to:
- Medicine and Biomedical Sciences
- Agriculture
- The Environment
The focus on these three technology sectors recognizes that complete Biotechnology applications often require a combination of techniques. 3 Biotech not only presents the latest developments in biotechnology but also addresses the problems and benefits of integrating a variety of techniques for a particular application. 3 Biotech will appeal to scientists and engineers in both academia and industry focused on the safe and efficient application of Biotechnology to Medicine, Agriculture and the Environment.