Kaveh H Babai, Fei Long, Martin Malý, Keitaro Yamashita, Garib N Murshudov
{"title":"Improving macromolecular structure refinement with metal-coordination restraints.","authors":"Kaveh H Babai, Fei Long, Martin Malý, Keitaro Yamashita, Garib N Murshudov","doi":"10.1107/S2059798324011458","DOIUrl":null,"url":null,"abstract":"<p><p>Metals are essential components for the structure and function of many proteins. However, accurate modelling of their coordination environments remains a challenge due to the complexity and diversity of metal-coordination geometries. To address this, a method is presented for extracting and analysing coordination information, including bond lengths and angles, from the Crystallography Open Database. By using these data, comprehensive descriptions of metal-containing components are generated. A stereochemical information generator for a particular component within a specific macromolecule leverages an example PDB/mmCIF file containing the component to account for the actual surrounding environment. A matching process has been developed and implemented to align the derived metal structures with idealized coordinates from a coordination geometry library. Additionally, various strategies, depending on the quality of the matches, were employed to compile distance and angle statistics for the refinement of macromolecular structures. The developed methods were implemented in a new program, MetalCoord, that classifies and utilizes the metal-coordination geometry. The effectiveness of the developed algorithms was tested using metal-containing components from the PDB. As a result, metal-containing components from the CCP4 monomer library have been updated. The updated monomer dictionaries, in concert with the derived restraints, can be used in most structural biology computations, including macromolecular crystallography, single-particle cryo-EM and even molecular mechanics.</p>","PeriodicalId":7116,"journal":{"name":"Acta Crystallographica. Section D, Structural Biology","volume":" ","pages":"821-833"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11626771/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica. Section D, Structural Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1107/S2059798324011458","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Metals are essential components for the structure and function of many proteins. However, accurate modelling of their coordination environments remains a challenge due to the complexity and diversity of metal-coordination geometries. To address this, a method is presented for extracting and analysing coordination information, including bond lengths and angles, from the Crystallography Open Database. By using these data, comprehensive descriptions of metal-containing components are generated. A stereochemical information generator for a particular component within a specific macromolecule leverages an example PDB/mmCIF file containing the component to account for the actual surrounding environment. A matching process has been developed and implemented to align the derived metal structures with idealized coordinates from a coordination geometry library. Additionally, various strategies, depending on the quality of the matches, were employed to compile distance and angle statistics for the refinement of macromolecular structures. The developed methods were implemented in a new program, MetalCoord, that classifies and utilizes the metal-coordination geometry. The effectiveness of the developed algorithms was tested using metal-containing components from the PDB. As a result, metal-containing components from the CCP4 monomer library have been updated. The updated monomer dictionaries, in concert with the derived restraints, can be used in most structural biology computations, including macromolecular crystallography, single-particle cryo-EM and even molecular mechanics.
期刊介绍:
Acta Crystallographica Section D welcomes the submission of articles covering any aspect of structural biology, with a particular emphasis on the structures of biological macromolecules or the methods used to determine them.
Reports on new structures of biological importance may address the smallest macromolecules to the largest complex molecular machines. These structures may have been determined using any structural biology technique including crystallography, NMR, cryoEM and/or other techniques. The key criterion is that such articles must present significant new insights into biological, chemical or medical sciences. The inclusion of complementary data that support the conclusions drawn from the structural studies (such as binding studies, mass spectrometry, enzyme assays, or analysis of mutants or other modified forms of biological macromolecule) is encouraged.
Methods articles may include new approaches to any aspect of biological structure determination or structure analysis but will only be accepted where they focus on new methods that are demonstrated to be of general applicability and importance to structural biology. Articles describing particularly difficult problems in structural biology are also welcomed, if the analysis would provide useful insights to others facing similar problems.