Land-use change, no-net-loss policies, and effects on carbon dioxide removals

IF 3.9 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Carbon Balance and Management Pub Date : 2024-12-04 DOI:10.1186/s13021-024-00287-9
David N. Wear, Matthew Wibbenmeyer
{"title":"Land-use change, no-net-loss policies, and effects on carbon dioxide removals","authors":"David N. Wear,&nbsp;Matthew Wibbenmeyer","doi":"10.1186/s13021-024-00287-9","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Carbon dioxide removal from the atmosphere (CDR) is a critical component of strategies for restricting global warming to 1.5°C and is expected to come largely from the sequestration of carbon in vegetation. Because CDR rates have been declining in the United States, in part due to land use changes, policy proposals are focused on altering land uses, through afforestation, avoided deforestation, and no-net-loss strategies. Estimating policy effects requires a careful assessment of how land uses interact with forest conditions to determine future CDR.</p><h3>Results</h3><p>We evaluate how alternative specifications of land use-forest condition interactions in the United States affect projections of CDR using a model that mirrors land sector net emission inventories generated by the US government (EPA). Without land use change, CDR declines from 0.826 GT/yr in 2017 to 0.596 GT/yr in 2062 (28%) due to forest aging and disturbances. For a land use scenario that extends recent rates of change, we compare CDR estimated based on net changes in land use (Net Change model) and estimates that separately account for the distinct CDR implications of forest losses and forest gains (Component Change model). The Net Change model, a common specification, underestimates the CDR losses of land use by about 56% when compared with the Component Change models. We also estimate per hectare CDR losses from deforestation and gains from afforestation and find that afforestation gains lag deforestation losses in every ecological province in the US.</p><h3>Conclusions</h3><p>Net Change approaches substantially underestimate the impact of land use change on CDR and should be avoided. Component Change models highlight that avoided deforestation may provide up to twice the CDR benefits as increased afforestation—though preference for one policy over the other would require a cost assessment. The disparities in the CDR impacts of afforestation and deforestation indicate that no-net-loss policies could mitigate some CDR losses but would lead to overall declines in CDR for our 45-year time horizon. Over a much longer period afforestation could capture more of the losses from deforestation but at a timeframe inconsistent with most climate change policy efforts.</p></div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"19 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://cbmjournal.biomedcentral.com/counter/pdf/10.1186/s13021-024-00287-9","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Balance and Management","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s13021-024-00287-9","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Carbon dioxide removal from the atmosphere (CDR) is a critical component of strategies for restricting global warming to 1.5°C and is expected to come largely from the sequestration of carbon in vegetation. Because CDR rates have been declining in the United States, in part due to land use changes, policy proposals are focused on altering land uses, through afforestation, avoided deforestation, and no-net-loss strategies. Estimating policy effects requires a careful assessment of how land uses interact with forest conditions to determine future CDR.

Results

We evaluate how alternative specifications of land use-forest condition interactions in the United States affect projections of CDR using a model that mirrors land sector net emission inventories generated by the US government (EPA). Without land use change, CDR declines from 0.826 GT/yr in 2017 to 0.596 GT/yr in 2062 (28%) due to forest aging and disturbances. For a land use scenario that extends recent rates of change, we compare CDR estimated based on net changes in land use (Net Change model) and estimates that separately account for the distinct CDR implications of forest losses and forest gains (Component Change model). The Net Change model, a common specification, underestimates the CDR losses of land use by about 56% when compared with the Component Change models. We also estimate per hectare CDR losses from deforestation and gains from afforestation and find that afforestation gains lag deforestation losses in every ecological province in the US.

Conclusions

Net Change approaches substantially underestimate the impact of land use change on CDR and should be avoided. Component Change models highlight that avoided deforestation may provide up to twice the CDR benefits as increased afforestation—though preference for one policy over the other would require a cost assessment. The disparities in the CDR impacts of afforestation and deforestation indicate that no-net-loss policies could mitigate some CDR losses but would lead to overall declines in CDR for our 45-year time horizon. Over a much longer period afforestation could capture more of the losses from deforestation but at a timeframe inconsistent with most climate change policy efforts.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
土地利用变化、无净损失政策以及对二氧化碳清除的影响。
背景:从大气中去除二氧化碳(CDR)是将全球变暖限制在1.5°C的战略的关键组成部分,预计主要来自植被的碳固存。由于美国的CDR率一直在下降,部分原因是土地利用的变化,因此政策建议的重点是通过植树造林、避免毁林和无净损失战略来改变土地利用。估计政策效果需要仔细评估土地利用如何与森林条件相互作用,以确定未来的CDR。结果:我们使用一个反映美国政府(EPA)产生的土地部门净排放清单的模型,评估了美国土地利用-森林条件相互作用的替代规范如何影响CDR的预测。在没有土地利用变化的情况下,由于森林老化和干扰,CDR从2017年的0.826 GT/年下降到2062年的0.596 GT/年(28%)。对于扩大近期变化率的土地利用情景,我们比较了基于土地利用净变化的CDR估计值(净变化模型)和单独考虑森林损失和森林收益的CDR影响的估计值(组分变化模型)。净变化模型是一种常用的规格,与成分变化模型相比,它低估了土地利用的CDR损失约56%。我们还估算了每公顷森林砍伐造成的CDR损失和造林带来的收益,发现在美国的每个生态省,造林收益都滞后于森林砍伐损失。结论:净变化方法大大低估了土地利用变化对CDR的影响,应避免使用。成分变化模型强调,避免砍伐森林可能提供的CDR效益是增加植树造林的两倍——尽管对其中一项政策的偏好需要进行成本评估。造林和毁林对CDR影响的差异表明,无净损失政策可以减轻部分CDR损失,但会导致45年时间范围内CDR的总体下降。在更长的时期内,造林可以弥补森林砍伐造成的更多损失,但其时间框架与大多数气候变化政策努力不一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Carbon Balance and Management
Carbon Balance and Management Environmental Science-Management, Monitoring, Policy and Law
CiteScore
7.60
自引率
0.00%
发文量
17
审稿时长
14 weeks
期刊介绍: Carbon Balance and Management is an open access, peer-reviewed online journal that encompasses all aspects of research aimed at developing a comprehensive policy relevant to the understanding of the global carbon cycle. The global carbon cycle involves important couplings between climate, atmospheric CO2 and the terrestrial and oceanic biospheres. The current transformation of the carbon cycle due to changes in climate and atmospheric composition is widely recognized as potentially dangerous for the biosphere and for the well-being of humankind, and therefore monitoring, understanding and predicting the evolution of the carbon cycle in the context of the whole biosphere (both terrestrial and marine) is a challenge to the scientific community. This demands interdisciplinary research and new approaches for studying geographical and temporal distributions of carbon pools and fluxes, control and feedback mechanisms of the carbon-climate system, points of intervention and windows of opportunity for managing the carbon-climate-human system. Carbon Balance and Management is a medium for researchers in the field to convey the results of their research across disciplinary boundaries. Through this dissemination of research, the journal aims to support the work of the Intergovernmental Panel for Climate Change (IPCC) and to provide governmental and non-governmental organizations with instantaneous access to continually emerging knowledge, including paradigm shifts and consensual views.
期刊最新文献
Estimating carbon stocks and woody perennials diversity in cropland agroforestry on three different land ecosystems in Bangladesh Advancing forest carbon projections requires improved convergence between ecological and economic models Integrating territorial pattern changes into the relationship between carbon sequestration and water yield in the Yangtze River Basin, China Improved aboveground biomass estimation and regional assessment with aerial lidar in California’s subalpine forests Land-use change, no-net-loss policies, and effects on carbon dioxide removals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1