Land-use change, no-net-loss policies, and effects on carbon dioxide removals

IF 3.9 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Carbon Balance and Management Pub Date : 2024-12-04 DOI:10.1186/s13021-024-00287-9
David N. Wear, Matthew Wibbenmeyer
{"title":"Land-use change, no-net-loss policies, and effects on carbon dioxide removals","authors":"David N. Wear,&nbsp;Matthew Wibbenmeyer","doi":"10.1186/s13021-024-00287-9","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Carbon dioxide removal from the atmosphere (CDR) is a critical component of strategies for restricting global warming to 1.5°C and is expected to come largely from the sequestration of carbon in vegetation. Because CDR rates have been declining in the United States, in part due to land use changes, policy proposals are focused on altering land uses, through afforestation, avoided deforestation, and no-net-loss strategies. Estimating policy effects requires a careful assessment of how land uses interact with forest conditions to determine future CDR.</p><h3>Results</h3><p>We evaluate how alternative specifications of land use-forest condition interactions in the United States affect projections of CDR using a model that mirrors land sector net emission inventories generated by the US government (EPA). Without land use change, CDR declines from 0.826 GT/yr in 2017 to 0.596 GT/yr in 2062 (28%) due to forest aging and disturbances. For a land use scenario that extends recent rates of change, we compare CDR estimated based on net changes in land use (Net Change model) and estimates that separately account for the distinct CDR implications of forest losses and forest gains (Component Change model). The Net Change model, a common specification, underestimates the CDR losses of land use by about 56% when compared with the Component Change models. We also estimate per hectare CDR losses from deforestation and gains from afforestation and find that afforestation gains lag deforestation losses in every ecological province in the US.</p><h3>Conclusions</h3><p>Net Change approaches substantially underestimate the impact of land use change on CDR and should be avoided. Component Change models highlight that avoided deforestation may provide up to twice the CDR benefits as increased afforestation—though preference for one policy over the other would require a cost assessment. The disparities in the CDR impacts of afforestation and deforestation indicate that no-net-loss policies could mitigate some CDR losses but would lead to overall declines in CDR for our 45-year time horizon. Over a much longer period afforestation could capture more of the losses from deforestation but at a timeframe inconsistent with most climate change policy efforts.</p></div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"19 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://cbmjournal.biomedcentral.com/counter/pdf/10.1186/s13021-024-00287-9","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Balance and Management","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s13021-024-00287-9","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Carbon dioxide removal from the atmosphere (CDR) is a critical component of strategies for restricting global warming to 1.5°C and is expected to come largely from the sequestration of carbon in vegetation. Because CDR rates have been declining in the United States, in part due to land use changes, policy proposals are focused on altering land uses, through afforestation, avoided deforestation, and no-net-loss strategies. Estimating policy effects requires a careful assessment of how land uses interact with forest conditions to determine future CDR.

Results

We evaluate how alternative specifications of land use-forest condition interactions in the United States affect projections of CDR using a model that mirrors land sector net emission inventories generated by the US government (EPA). Without land use change, CDR declines from 0.826 GT/yr in 2017 to 0.596 GT/yr in 2062 (28%) due to forest aging and disturbances. For a land use scenario that extends recent rates of change, we compare CDR estimated based on net changes in land use (Net Change model) and estimates that separately account for the distinct CDR implications of forest losses and forest gains (Component Change model). The Net Change model, a common specification, underestimates the CDR losses of land use by about 56% when compared with the Component Change models. We also estimate per hectare CDR losses from deforestation and gains from afforestation and find that afforestation gains lag deforestation losses in every ecological province in the US.

Conclusions

Net Change approaches substantially underestimate the impact of land use change on CDR and should be avoided. Component Change models highlight that avoided deforestation may provide up to twice the CDR benefits as increased afforestation—though preference for one policy over the other would require a cost assessment. The disparities in the CDR impacts of afforestation and deforestation indicate that no-net-loss policies could mitigate some CDR losses but would lead to overall declines in CDR for our 45-year time horizon. Over a much longer period afforestation could capture more of the losses from deforestation but at a timeframe inconsistent with most climate change policy efforts.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Carbon Balance and Management
Carbon Balance and Management Environmental Science-Management, Monitoring, Policy and Law
CiteScore
7.60
自引率
0.00%
发文量
17
审稿时长
14 weeks
期刊介绍: Carbon Balance and Management is an open access, peer-reviewed online journal that encompasses all aspects of research aimed at developing a comprehensive policy relevant to the understanding of the global carbon cycle. The global carbon cycle involves important couplings between climate, atmospheric CO2 and the terrestrial and oceanic biospheres. The current transformation of the carbon cycle due to changes in climate and atmospheric composition is widely recognized as potentially dangerous for the biosphere and for the well-being of humankind, and therefore monitoring, understanding and predicting the evolution of the carbon cycle in the context of the whole biosphere (both terrestrial and marine) is a challenge to the scientific community. This demands interdisciplinary research and new approaches for studying geographical and temporal distributions of carbon pools and fluxes, control and feedback mechanisms of the carbon-climate system, points of intervention and windows of opportunity for managing the carbon-climate-human system. Carbon Balance and Management is a medium for researchers in the field to convey the results of their research across disciplinary boundaries. Through this dissemination of research, the journal aims to support the work of the Intergovernmental Panel for Climate Change (IPCC) and to provide governmental and non-governmental organizations with instantaneous access to continually emerging knowledge, including paradigm shifts and consensual views.
期刊最新文献
Advancing forest carbon projections requires improved convergence between ecological and economic models Integrating territorial pattern changes into the relationship between carbon sequestration and water yield in the Yangtze River Basin, China Improved aboveground biomass estimation and regional assessment with aerial lidar in California’s subalpine forests Land-use change, no-net-loss policies, and effects on carbon dioxide removals Urban land use optimization prediction considering carbon neutral development goals: a case study of Taihu Bay Core area in China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1