Decarbonizing the Food System with Microbes and Carbon-Neutral Feedstocks.

IF 10.6 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY Annual review of food science and technology Pub Date : 2024-12-03 DOI:10.1146/annurev-food-111523-121717
Niaz Mahmud, Kayode J Taiwo, Joseph G Usack
{"title":"Decarbonizing the Food System with Microbes and Carbon-Neutral Feedstocks.","authors":"Niaz Mahmud, Kayode J Taiwo, Joseph G Usack","doi":"10.1146/annurev-food-111523-121717","DOIUrl":null,"url":null,"abstract":"<p><p>Harnessing CO<sub>2</sub> and CO<sub>2</sub>-derived C1-C2 compounds for microbial food production can mitigate greenhouse gas emissions and boost sustainability within the food sector. These innovative technologies support carbon neutrality by generating nutrient-rich edible microbial biomass and biocompounds using autotrophic and heterotrophic microbes. However, qualifying microbial food viability and future impacts in the food sector remains challenging due to their diversity, technical complexity, socioeconomic forces, and incipient markets. This review provides an overview of microbial food systems and then delves into the technical interplay among feedstocks, microbes, carbon fixation platforms, bioreactor operations, and downstream processes. The review further explores developing markets for microbial food products, the industrial landscape, economic drivers, and emerging trends in next-generation food products. The analysis suggests a transformative shift in the food industry is underway, yet significant challenges persist, such as securing cost-effective feedstocks, improving downstream processing efficiency, and gaining consumer acceptance. These challenges require innovative solutions and collaborative efforts to ensure the future commercial success of microbial foods-doing so will create myriad opportunities to transform and decarbonize our food system.</p>","PeriodicalId":8187,"journal":{"name":"Annual review of food science and technology","volume":" ","pages":""},"PeriodicalIF":10.6000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of food science and technology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1146/annurev-food-111523-121717","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Harnessing CO2 and CO2-derived C1-C2 compounds for microbial food production can mitigate greenhouse gas emissions and boost sustainability within the food sector. These innovative technologies support carbon neutrality by generating nutrient-rich edible microbial biomass and biocompounds using autotrophic and heterotrophic microbes. However, qualifying microbial food viability and future impacts in the food sector remains challenging due to their diversity, technical complexity, socioeconomic forces, and incipient markets. This review provides an overview of microbial food systems and then delves into the technical interplay among feedstocks, microbes, carbon fixation platforms, bioreactor operations, and downstream processes. The review further explores developing markets for microbial food products, the industrial landscape, economic drivers, and emerging trends in next-generation food products. The analysis suggests a transformative shift in the food industry is underway, yet significant challenges persist, such as securing cost-effective feedstocks, improving downstream processing efficiency, and gaining consumer acceptance. These challenges require innovative solutions and collaborative efforts to ensure the future commercial success of microbial foods-doing so will create myriad opportunities to transform and decarbonize our food system.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
22.40
自引率
0.80%
发文量
20
审稿时长
>12 weeks
期刊介绍: Since 2010, the Annual Review of Food Science and Technology has been a key source for current developments in the multidisciplinary field. The covered topics span food microbiology, food-borne pathogens, and fermentation; food engineering, chemistry, biochemistry, rheology, and sensory properties; novel ingredients and nutrigenomics; emerging technologies in food processing and preservation; and applications of biotechnology and nanomaterials in food systems.
期刊最新文献
Change Meat Resistance: Systematic Literature Review on Consumer Resistance to the Alternative Protein Transition. Comfort Foods in the Twenty-First Century: Friend or Foe? Decarbonizing the Food System with Microbes and Carbon-Neutral Feedstocks. Mycoprotein: A Healthy and Sustainable Source of Alternative Protein-Based Foods. Nano in Micro: Novel Concepts in Foodborne Pathogen Transmission and Pathogenesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1