What Are We Learning from Plant Pangenomes?

IF 21.3 1区 生物学 Q1 PLANT SCIENCES Annual review of plant biology Pub Date : 2024-12-02 DOI:10.1146/annurev-arplant-090823-015358
Murukarthick Jayakodi, Hyeonah Shim, Martin Mascher
{"title":"What Are We Learning from Plant Pangenomes?","authors":"Murukarthick Jayakodi, Hyeonah Shim, Martin Mascher","doi":"10.1146/annurev-arplant-090823-015358","DOIUrl":null,"url":null,"abstract":"<p><p>A single reference genome does not fully capture species diversity. By contrast, a pangenome incorporates multiple genomes to capture the entire set of nonredundant genes in a given species, along with its genome diversity. New sequencing technologies enable researchers to produce multiple high-quality genome sequences and catalog diverse genetic variations with better precision. Pangenomic studies have detected structural variants in plant genomes, dissected the genetic architecture of agronomic traits, and helped unravel molecular underpinnings and evolutionary origins of plant phenotypes. The pangenome concept has further evolved into a so-called superpangenome that includes wild relatives within a genus or clade and shifted to graph-based reference systems. Nevertheless, building pangenomes and representing complex structural variants remain challenging in many crops. Standardized computing pipelines and common data structures are needed to compare and interpret pangenomes. The growing body of plant pangenomics data requires new algorithms, huge data storage capacity, and training to help researchers and breeders take advantage of newly discovered genes and genetic variants.</p>","PeriodicalId":8335,"journal":{"name":"Annual review of plant biology","volume":" ","pages":""},"PeriodicalIF":21.3000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of plant biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-arplant-090823-015358","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

A single reference genome does not fully capture species diversity. By contrast, a pangenome incorporates multiple genomes to capture the entire set of nonredundant genes in a given species, along with its genome diversity. New sequencing technologies enable researchers to produce multiple high-quality genome sequences and catalog diverse genetic variations with better precision. Pangenomic studies have detected structural variants in plant genomes, dissected the genetic architecture of agronomic traits, and helped unravel molecular underpinnings and evolutionary origins of plant phenotypes. The pangenome concept has further evolved into a so-called superpangenome that includes wild relatives within a genus or clade and shifted to graph-based reference systems. Nevertheless, building pangenomes and representing complex structural variants remain challenging in many crops. Standardized computing pipelines and common data structures are needed to compare and interpret pangenomes. The growing body of plant pangenomics data requires new algorithms, huge data storage capacity, and training to help researchers and breeders take advantage of newly discovered genes and genetic variants.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Annual review of plant biology
Annual review of plant biology 生物-植物科学
CiteScore
40.40
自引率
0.40%
发文量
29
期刊介绍: The Annual Review of Plant Biology is a peer-reviewed scientific journal published by Annual Reviews. It has been in publication since 1950 and covers significant developments in the field of plant biology, including biochemistry and biosynthesis, genetics, genomics and molecular biology, cell differentiation, tissue, organ and whole plant events, acclimation and adaptation, and methods and model organisms. The current volume of this journal has been converted from gated to open access through Annual Reviews' Subscribe to Open program, with all articles published under a CC BY license.
期刊最新文献
From Starfish to Gibberellins: Biosynthesis and Regulation of Plant Hormones. Green Revolution DELLA Proteins: Functional Analysis and Regulatory Mechanisms. What Are We Learning from Plant Pangenomes? Adaptation and the Geographic Spread of Crop Species. Environmental Control of Hypocotyl Elongation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1