Effects of Silicon Concentration and Synthesis Duration on Lignin Structure: A Spectroscopic and Microscopic Study

IF 3.2 4区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Biopolymers Pub Date : 2024-11-30 DOI:10.1002/bip.23640
Daniela Djikanović, Jelena Jovanović, Aleksandar Kalauzi, Jelena Dragišić Maksimović, Ksenija Radotić
{"title":"Effects of Silicon Concentration and Synthesis Duration on Lignin Structure: A Spectroscopic and Microscopic Study","authors":"Daniela Djikanović,&nbsp;Jelena Jovanović,&nbsp;Aleksandar Kalauzi,&nbsp;Jelena Dragišić Maksimović,&nbsp;Ksenija Radotić","doi":"10.1002/bip.23640","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Silicon (Si) is a highly abundant mineral in Earth's crust. It plays a vital role in plant growth, providing mechanical support, enhancing grain yield, facilitating mineral nutrition, and aiding stress response mechanisms. The intricate relationship between silicification and lignin chemistry significantly impacts cell wall structure. Yet, the precise influence of Si on lignin synthesis remains elusive. This study investigated the interaction between Si and lignin model compounds during in vitro synthesis. Employing spectroscopic and microscopic analyses, we delineated how Si concentrations modulate lignin polymerization dynamics, particularly affecting molecular conformation and aggregation behavior over time. Fluctuations in the polymer structure are directly related to both the synthesis time and the concentration of silica. Our results demonstrate that lower Si concentrations promote the aggregation of lignin oligomers into larger particles, while higher concentrations increase the possibility of oligomer repulsion, thus preventing particle growth. These findings elucidate the intricate interplay between Si and lignin, which is crucial for understanding plant cell wall structure and stress resilience. Moreover, the results provide insights for developing lignin-silica materials with increasing applications in industry and medicine.</p>\n </div>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":"116 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biopolymers","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bip.23640","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Silicon (Si) is a highly abundant mineral in Earth's crust. It plays a vital role in plant growth, providing mechanical support, enhancing grain yield, facilitating mineral nutrition, and aiding stress response mechanisms. The intricate relationship between silicification and lignin chemistry significantly impacts cell wall structure. Yet, the precise influence of Si on lignin synthesis remains elusive. This study investigated the interaction between Si and lignin model compounds during in vitro synthesis. Employing spectroscopic and microscopic analyses, we delineated how Si concentrations modulate lignin polymerization dynamics, particularly affecting molecular conformation and aggregation behavior over time. Fluctuations in the polymer structure are directly related to both the synthesis time and the concentration of silica. Our results demonstrate that lower Si concentrations promote the aggregation of lignin oligomers into larger particles, while higher concentrations increase the possibility of oligomer repulsion, thus preventing particle growth. These findings elucidate the intricate interplay between Si and lignin, which is crucial for understanding plant cell wall structure and stress resilience. Moreover, the results provide insights for developing lignin-silica materials with increasing applications in industry and medicine.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
硅浓度和合成时间对木质素结构的影响:光谱和显微研究。
硅(Si)是地壳中储量丰富的矿物。它在植物生长、提供机械支持、提高粮食产量、促进矿质营养和协助胁迫响应机制等方面起着至关重要的作用。硅化和木质素化学之间的复杂关系显著影响细胞壁结构。然而,硅对木质素合成的确切影响仍然难以捉摸。本研究考察了Si与木质素模型化合物在体外合成过程中的相互作用。利用光谱和微观分析,我们描绘了Si浓度如何调节木质素聚合动力学,特别是随着时间的推移影响分子构象和聚集行为。聚合物结构的波动与合成时间和二氧化硅浓度直接相关。我们的研究结果表明,较低的Si浓度促进木质素低聚物聚集成更大的颗粒,而较高的Si浓度增加了低聚物排斥的可能性,从而阻止了颗粒的生长。这些发现阐明了Si和木质素之间复杂的相互作用,这对于理解植物细胞壁结构和逆境恢复能力至关重要。此外,研究结果还为木质素-二氧化硅材料在工业和医学上的应用提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biopolymers
Biopolymers 生物-生化与分子生物学
CiteScore
5.30
自引率
0.00%
发文量
48
审稿时长
3 months
期刊介绍: Founded in 1963, Biopolymers publishes strictly peer-reviewed papers examining naturally occurring and synthetic biological macromolecules. By including experimental and theoretical studies on the fundamental behaviour as well as applications of biopolymers, the journal serves the interdisciplinary biochemical, biophysical, biomaterials and biomedical research communities.
期刊最新文献
Advanced Drug Delivery Systems Utilizing β-Lactoglobulin: An Efficient Protein-Based Drug Carrier Multi-Scale Structures, Functional Properties, and Applications of Starch Modified by Dry Heat Treatment Histidine Tags in Human Recombinant Alpha B-Crystallin (HSPB5) Proteins Are Detrimental for Zinc Binding Studies Preparation and Adsorption Properties of Sodium Trimetaphosphate Crosslinked Porous Corn Starch Reversible Redox Controlled DNA Condensation by a Simple Noncanonical Dicationic Diphenylalanine Derivative
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1