首页 > 最新文献

Biopolymers最新文献

英文 中文
Surface Decoration of Cellulose With Trifluoromethylphenyl Substituted Thiourea: A Robust Hydrogen-Bonding Catalyst in Conjunction With L-Proline for the Asymmetric Direct Mannich Reaction. 用三氟甲基苯基取代的硫脲对纤维素进行表面装饰:与 L-脯氨酸结合用于不对称直接曼尼希反应的强效氢键催化剂。
IF 3.2 4区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-01 Epub Date: 2024-12-13 DOI: 10.1002/bip.23647
Ayşe Haliç Poslu, Gamze Koz

Cellulose is one of the most abundant biopolymers in nature. Despite being the subject of research in various fields, it is not as famous as chitosan in catalyst design. Herein, a novel thiourea-functionalized cellulose (CTU-6) was synthesized as a robust hydrogen bonding catalyst with the degree of substitution (DS) of 0.84. CTU-6 was characterized using Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), x-ray powder diffraction (XRD), proton nuclear magnetic resonance spectroscopy (1HNMR), solid-state cross-polarization magic angle spinning carbon-13 nuclear magnetic resonance (CP/MAS 13C-NMR), thermal gravimetric analysis (TGA) and elementel analysis. CTU-6 catalyzed the direct asymmetric Mannich reaction between acetone, aniline, and various aromatic aldehydes in cooperation with L-proline. The reaction exhibited excellent enantioselectivity, achieving up to 98% enantiomeric excess (ee) at room temperature. Incorporating trifluoromethylphenyl-substituted thiourea into the cellulose framework leverages its ability to form hydrogen bonds, thereby enabling precise control over the asymmetric induction. This study highlights the potential of cellulose-based catalysts in advancing asymmetric synthesis and their versatility in various organic reactions in cooperation with small chiral ligands. This synergy not only facilitates the efficient catalytic process but also improves the stereochemical outcomes of the reactions. This method underscores the importance of utilizing renewable and versatile cellulose materials in combination with chiral auxiliaries to achieve high levels of enantioselectivity.

纤维素是自然界中最丰富的生物聚合物之一。尽管在各个领域都是研究的主题,但在催化剂设计方面,它并不像壳聚糖那样出名。本文合成了一种新型硫脲功能化纤维素(CTU-6)作为氢键催化剂,取代度(DS)为0.84。采用傅里叶变换红外光谱(FT-IR)、扫描电镜(SEM)、x射线粉末衍射(XRD)、质子核磁共振(1HNMR)、固态交极化魔角自旋碳-13核磁共振(CP/MAS 13C-NMR)、热重分析(TGA)和元素分析对CTU-6进行了表征。CTU-6与l -脯氨酸协同催化丙酮、苯胺和多种芳醛之间的直接不对称曼尼希反应。该反应表现出优异的对映体选择性,在室温下达到98%的对映体过量(ee)。将三氟甲基苯基取代硫脲纳入纤维素框架中,利用其形成氢键的能力,从而能够精确控制不对称诱导。这项研究突出了纤维素基催化剂在推进不对称合成方面的潜力,以及它们在与小手性配体合作的各种有机反应中的多功能性。这种协同作用不仅促进了高效的催化过程,而且提高了反应的立体化学结果。这种方法强调了利用可再生和通用纤维素材料与手性助剂结合以实现高水平对映体选择性的重要性。
{"title":"Surface Decoration of Cellulose With Trifluoromethylphenyl Substituted Thiourea: A Robust Hydrogen-Bonding Catalyst in Conjunction With L-Proline for the Asymmetric Direct Mannich Reaction.","authors":"Ayşe Haliç Poslu, Gamze Koz","doi":"10.1002/bip.23647","DOIUrl":"10.1002/bip.23647","url":null,"abstract":"<p><p>Cellulose is one of the most abundant biopolymers in nature. Despite being the subject of research in various fields, it is not as famous as chitosan in catalyst design. Herein, a novel thiourea-functionalized cellulose (CTU-6) was synthesized as a robust hydrogen bonding catalyst with the degree of substitution (DS) of 0.84. CTU-6 was characterized using Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), x-ray powder diffraction (XRD), proton nuclear magnetic resonance spectroscopy (<sup>1</sup>HNMR), solid-state cross-polarization magic angle spinning carbon-13 nuclear magnetic resonance (CP/MAS <sup>13</sup>C-NMR), thermal gravimetric analysis (TGA) and elementel analysis. CTU-6 catalyzed the direct asymmetric Mannich reaction between acetone, aniline, and various aromatic aldehydes in cooperation with L-proline. The reaction exhibited excellent enantioselectivity, achieving up to 98% enantiomeric excess (ee) at room temperature. Incorporating trifluoromethylphenyl-substituted thiourea into the cellulose framework leverages its ability to form hydrogen bonds, thereby enabling precise control over the asymmetric induction. This study highlights the potential of cellulose-based catalysts in advancing asymmetric synthesis and their versatility in various organic reactions in cooperation with small chiral ligands. This synergy not only facilitates the efficient catalytic process but also improves the stereochemical outcomes of the reactions. This method underscores the importance of utilizing renewable and versatile cellulose materials in combination with chiral auxiliaries to achieve high levels of enantioselectivity.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":" ","pages":"e23647"},"PeriodicalIF":3.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142823796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating the Influence of Additive Manufacturing and Ultrasonic Coating Parameters on Biopolymeric Scaffold Performance Using Response Surface Methodology. 利用响应面方法研究增材制造和超声波涂层参数对生物聚合物支架性能的影响
IF 3.2 4区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-01 Epub Date: 2024-09-25 DOI: 10.1002/bip.23629
Shrutika Sharma, Abhinav Mishra, Vivek Jain, Vishal Gupta

Triply periodic minimal surface (TPMS) scaffolds have gained attention in additive manufacturing due to their unique porous structures, which are useful in biomedical applications. Unlike metallic implants that can cause stress shielding, polymeric scaffolds offer a safer alternative. This study is focused on enhancing the compressive strength of additive-manufactured polylactic acid (PLA) scaffolds with a diamond structure. The response surface methodology (RSM)-based experimental design was developed to study the influence of printing parameters. The fused deposition modeling (FDM) process parameters were optimized, achieving a compressive strength of 56.2 MPa. Subsequently, the scaffolds were fabricated at optimized parameters and underwent ultrasonic-assisted polydopamine coating. With the utilization of the RSM approach, the study examined the effects of ultrasonic vibration power, coating solution concentration, and submersion time on compressive strength. The optimal coating conditions led to a maximum compressive strength of 92.77 MPa-a 65.1% improvement over the uncoated scaffold. This enhancement is attributed to the scaffold's porous structure, which enables uniform coating deposition. Energy-dispersive x-ray spectroscopy confirmed the successful polydopamine coating, with 10.64 wt% nitrogen content. These findings demonstrate the potential of ultrasonic-assisted coating in improving the mechanical properties of PLA scaffolds, making them suitable for biomedical applications.

三周期极小表面(TPMS)支架因其独特的多孔结构而在增材制造领域备受关注,这种结构在生物医学应用中非常有用。与可能导致应力屏蔽的金属植入物不同,聚合物支架提供了一种更安全的替代方案。本研究的重点是提高添加剂制造的具有金刚石结构的聚乳酸(PLA)支架的抗压强度。研究人员开发了基于响应面方法学(RSM)的实验设计来研究打印参数的影响。对熔融沉积成型(FDM)工艺参数进行了优化,使抗压强度达到 56.2 兆帕。随后,在优化参数下制作了支架,并进行了超声辅助多巴胺涂层。该研究利用 RSM 方法考察了超声波振动功率、涂层溶液浓度和浸没时间对抗压强度的影响。最佳涂层条件下的最大抗压强度为 92.77 兆帕,比未涂层支架提高了 65.1%。这种提高归功于支架的多孔结构,它能使涂层均匀沉积。能量色散 X 射线光谱证实了聚多巴胺涂层的成功,氮含量为 10.64 wt%。这些发现证明了超声波辅助涂层在改善聚乳酸支架机械性能方面的潜力,使其适用于生物医学应用。
{"title":"Investigating the Influence of Additive Manufacturing and Ultrasonic Coating Parameters on Biopolymeric Scaffold Performance Using Response Surface Methodology.","authors":"Shrutika Sharma, Abhinav Mishra, Vivek Jain, Vishal Gupta","doi":"10.1002/bip.23629","DOIUrl":"10.1002/bip.23629","url":null,"abstract":"<p><p>Triply periodic minimal surface (TPMS) scaffolds have gained attention in additive manufacturing due to their unique porous structures, which are useful in biomedical applications. Unlike metallic implants that can cause stress shielding, polymeric scaffolds offer a safer alternative. This study is focused on enhancing the compressive strength of additive-manufactured polylactic acid (PLA) scaffolds with a diamond structure. The response surface methodology (RSM)-based experimental design was developed to study the influence of printing parameters. The fused deposition modeling (FDM) process parameters were optimized, achieving a compressive strength of 56.2 MPa. Subsequently, the scaffolds were fabricated at optimized parameters and underwent ultrasonic-assisted polydopamine coating. With the utilization of the RSM approach, the study examined the effects of ultrasonic vibration power, coating solution concentration, and submersion time on compressive strength. The optimal coating conditions led to a maximum compressive strength of 92.77 MPa-a 65.1% improvement over the uncoated scaffold. This enhancement is attributed to the scaffold's porous structure, which enables uniform coating deposition. Energy-dispersive x-ray spectroscopy confirmed the successful polydopamine coating, with 10.64 wt% nitrogen content. These findings demonstrate the potential of ultrasonic-assisted coating in improving the mechanical properties of PLA scaffolds, making them suitable for biomedical applications.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":" ","pages":"e23629"},"PeriodicalIF":3.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142340467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the Architecture of Starch Granules Revealed by Iodine Binding and Lintnerization. Part 2: Molecular Structure of Lintnerized Starches. 通过碘结合和林特纳化揭示淀粉颗粒的结构。第 2 部分:林特纳化淀粉的分子结构。
IF 3.2 4区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-01 Epub Date: 2024-10-15 DOI: 10.1002/bip.23636
Eric Bertoft, George Annor, Varatharajan Vamadevan, Amy Hui-Mei Lin

This investigation validated iodine binding in combination with lintnerization for studying the structural nature of the amorphous areas in starch granules. Lintners of four iodine vapor-stained and non-stained amylose-containing starches and their waxy counterparts were analyzed by high-performance anion-exchange chromatography (HPAEC). The composition of the lintners was strongly affected by the absence of amylose in barley and potato starch but not in maize and cassava starch. Iodine-stained waxy lintners possessed increased number of long B2 chains. β-Limit dextrins of the lintners were very variable in composition. Iodine inclusion complexes washed out from the granular residues in the lintners (mostly from amylose-containing barley and maize starches) were also analyzed. Acid-soluble complexes from both amylose-containing and waxy starches possessed a lot of material with a degree of polymerization (DP) around 60 and a periodicity in size of DP 8-12. Such long chains were only minor components in water-soluble complexes of amylose-containing barley and maize starch lintners, and they lacked the size periodicity. Models of the principal structure of the acid and water-soluble complexes are suggested. It is concluded that acid hydrolysis of iodine-stained starch granules is a useful tool in structural analyses of the molecular composition of amorphous parts of starch granules.

这项研究验证了将碘结合与林特化相结合来研究淀粉颗粒中无定形区域的结构性质。采用高效阴离子交换色谱法(HPAEC)分析了四种碘蒸气染色和未染色的含淀粉淀粉及其蜡质对应物的棉层。在大麦和马铃薯淀粉中,淀粉糊的组成受淀粉缺失的影响很大,而在玉米和木薯淀粉中则不受影响。碘染色的蜡质棉子具有更多的长 B2 链。纤毛虫的 β-极限糊精在组成上变化很大。此外,还分析了从皮棉颗粒残留物(主要来自含淀粉的大麦和玉米淀粉)中冲洗出的碘包合物。来自含淀粉淀粉和蜡质淀粉的酸溶性复合物含有大量聚合度(DP)约为 60、大小周期为 DP 8-12 的物质。这种长链在含淀粉的大麦和玉米淀粉蛋白的水溶性复合物中只是次要成分,而且缺乏大小周期性。提出了酸性和水溶性复合物的主要结构模型。结论是,碘染色淀粉颗粒的酸水解是对淀粉颗粒无定形部分的分子组成进行结构分析的有用工具。
{"title":"On the Architecture of Starch Granules Revealed by Iodine Binding and Lintnerization. Part 2: Molecular Structure of Lintnerized Starches.","authors":"Eric Bertoft, George Annor, Varatharajan Vamadevan, Amy Hui-Mei Lin","doi":"10.1002/bip.23636","DOIUrl":"10.1002/bip.23636","url":null,"abstract":"<p><p>This investigation validated iodine binding in combination with lintnerization for studying the structural nature of the amorphous areas in starch granules. Lintners of four iodine vapor-stained and non-stained amylose-containing starches and their waxy counterparts were analyzed by high-performance anion-exchange chromatography (HPAEC). The composition of the lintners was strongly affected by the absence of amylose in barley and potato starch but not in maize and cassava starch. Iodine-stained waxy lintners possessed increased number of long B2 chains. β-Limit dextrins of the lintners were very variable in composition. Iodine inclusion complexes washed out from the granular residues in the lintners (mostly from amylose-containing barley and maize starches) were also analyzed. Acid-soluble complexes from both amylose-containing and waxy starches possessed a lot of material with a degree of polymerization (DP) around 60 and a periodicity in size of DP 8-12. Such long chains were only minor components in water-soluble complexes of amylose-containing barley and maize starch lintners, and they lacked the size periodicity. Models of the principal structure of the acid and water-soluble complexes are suggested. It is concluded that acid hydrolysis of iodine-stained starch granules is a useful tool in structural analyses of the molecular composition of amorphous parts of starch granules.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":" ","pages":"e23636"},"PeriodicalIF":3.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142457108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of HEMA-Succinic Acid-PEG Bio-Based Monomers for High-Performance Hydrogels in Regenerative Medicine. 开发 HEMA-琥珀酸-PEG 生物基单体,用于再生医学中的高性能水凝胶。
IF 3.2 4区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-01 Epub Date: 2024-10-09 DOI: 10.1002/bip.23631
Hossein Rayat Pisheh, Alireza Sabzevari, Mojtaba Ansari, Kourosh Kabiri

In recent years, hydrogels have found a special place in regenerative medicine for tissue repair, rehabilitation, and drug delivery. To be used in regenerative medicine, hydrogels must have desirable physical, chemical, and biological properties. In this study, a new biomonomer based on hydroxyethyl methacrylate-succinic acid-polyethylene glycol 200 (HEMA-Suc-PEG) was synthesized and characterized. Then, using the synthesized monomers and different ratios of polyethylene glycol diacrylate (PEGDA) as a crosslinker, biocompatible hydrogels were synthesized through thermal and UV curing methods. The mechanical, physical, chemical, and biological properties of the hydrogels and the behavior of endothelial cells, an essential component of the cardiovascular system, were evaluated. The results showed that the hydrogel synthesized with 0.2 g of PEGDA (UV curing) has desirable mechanical and physical properties. Biological tests showed that these hydrogels are not only nontoxic to cells but also enhance cell adhesion. Therefore, the hydrogel containing the synthesized monomer HEMA-Suc-PEG and 0.2 g of PEGDA has the potential to be used in the cardiovascular system.

近年来,水凝胶在组织修复、康复和药物输送的再生医学中占据了特殊地位。要用于再生医学,水凝胶必须具有理想的物理、化学和生物特性。本研究合成并鉴定了一种基于甲基丙烯酸羟乙酯-丁二酸-聚乙二醇 200(HEMA-Suc-PEG)的新型生物单体。然后,使用合成的单体和不同比例的聚乙二醇二丙烯酸酯(PEGDA)作为交联剂,通过热固化和紫外固化方法合成了生物相容性水凝胶。对水凝胶的机械、物理、化学和生物特性以及心血管系统的重要组成部分内皮细胞的行为进行了评估。结果表明,用 0.2 克 PEGDA(紫外线固化)合成的水凝胶具有理想的机械和物理特性。生物测试表明,这些水凝胶不仅对细胞无毒,而且还能增强细胞粘附性。因此,含有合成单体 HEMA-Suc-PEG 和 0.2 克 PEGDA 的水凝胶有望用于心血管系统。
{"title":"Development of HEMA-Succinic Acid-PEG Bio-Based Monomers for High-Performance Hydrogels in Regenerative Medicine.","authors":"Hossein Rayat Pisheh, Alireza Sabzevari, Mojtaba Ansari, Kourosh Kabiri","doi":"10.1002/bip.23631","DOIUrl":"10.1002/bip.23631","url":null,"abstract":"<p><p>In recent years, hydrogels have found a special place in regenerative medicine for tissue repair, rehabilitation, and drug delivery. To be used in regenerative medicine, hydrogels must have desirable physical, chemical, and biological properties. In this study, a new biomonomer based on hydroxyethyl methacrylate-succinic acid-polyethylene glycol 200 (HEMA-Suc-PEG) was synthesized and characterized. Then, using the synthesized monomers and different ratios of polyethylene glycol diacrylate (PEGDA) as a crosslinker, biocompatible hydrogels were synthesized through thermal and UV curing methods. The mechanical, physical, chemical, and biological properties of the hydrogels and the behavior of endothelial cells, an essential component of the cardiovascular system, were evaluated. The results showed that the hydrogel synthesized with 0.2 g of PEGDA (UV curing) has desirable mechanical and physical properties. Biological tests showed that these hydrogels are not only nontoxic to cells but also enhance cell adhesion. Therefore, the hydrogel containing the synthesized monomer HEMA-Suc-PEG and 0.2 g of PEGDA has the potential to be used in the cardiovascular system.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":" ","pages":"e23631"},"PeriodicalIF":3.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142387624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of the Activation Energy for Pyrolytic Degradation of Poly-L-Lactide (PLA) During Artificially Accelerated Aging. 人工加速老化过程中聚l -丙交酯(PLA)热解降解活化能的评价
IF 3.2 4区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-01 Epub Date: 2024-12-06 DOI: 10.1002/bip.23642
Margarita Reit, Natalie Krug, Jan-Christoph Zarges, Hans-Peter Heim

In the course of this study, the pyrolytic degradation characteristics of three poly(lactic acid) (PLA) types were investigated under inert conditions using dynamic thermogravimetric analysis (TGA) across the temperature range of 23°C-600°C with four heating rates. Specifically, the activation energy and its implications were determined at different stages of degradation. For this purpose, a comparative analysis of various isoconversional methods, including Kissinger, Flynn-Wall-Ozawa (FWO), Friedman, and Kissinger-Akahira-Sunnose (KAS) was undertaken to evaluate the reliability of each. The results indicate a decrease in thermal stability, indicated by a shift of the derived mass loss curves to lower temperatures, as confirmed by an increased water content and decreased crystallinity of the test specimen during aging. The study also highlights that if crystallinity and moisture content increase moderately, the thermal degradation curves remain unchanged. Additionally, kinetic analyses using mentioned models indicate a multi-step degradation process of PLA. The activation energy fluctuates with the conversion rate, suggesting complex underlying kinetics. These findings emphasize the need for dynamic adjustment of predictive models for material lifespan. The three PLA types were characterized by Differential Scanning Calorimetry (DSC), moisture absorption measurement and Gel permeation chromatography (GPC).

在此研究过程中,采用动态热重分析(TGA)方法,在23°C-600°C的温度范围内,在4种加热速率下,研究了惰性条件下3种聚乳酸(PLA)的热解降解特性。具体来说,在不同的降解阶段确定了活化能及其含义。为此,本文对基辛格、Flynn-Wall-Ozawa (FWO)、Friedman和Kissinger- akahira - sunnose (KAS)等转换方法进行了比较分析,以评估每种等转换方法的可靠性。结果表明,热稳定性下降,通过导出的质量损失曲线向较低温度的移动表明,正如在老化过程中测试样品的含水量增加和结晶度下降所证实的那样。研究还强调,当结晶度和含水率适度增加时,热降解曲线保持不变。此外,使用上述模型的动力学分析表明PLA的降解过程是多步的。活化能随转化率的变化而波动,表明潜在的复杂动力学。这些发现强调了动态调整材料寿命预测模型的必要性。采用差示扫描量热法(DSC)、吸湿法和凝胶渗透色谱法(GPC)对三种聚乳酸进行了表征。
{"title":"Evaluation of the Activation Energy for Pyrolytic Degradation of Poly-L-Lactide (PLA) During Artificially Accelerated Aging.","authors":"Margarita Reit, Natalie Krug, Jan-Christoph Zarges, Hans-Peter Heim","doi":"10.1002/bip.23642","DOIUrl":"10.1002/bip.23642","url":null,"abstract":"<p><p>In the course of this study, the pyrolytic degradation characteristics of three poly(lactic acid) (PLA) types were investigated under inert conditions using dynamic thermogravimetric analysis (TGA) across the temperature range of 23°C-600°C with four heating rates. Specifically, the activation energy and its implications were determined at different stages of degradation. For this purpose, a comparative analysis of various isoconversional methods, including Kissinger, Flynn-Wall-Ozawa (FWO), Friedman, and Kissinger-Akahira-Sunnose (KAS) was undertaken to evaluate the reliability of each. The results indicate a decrease in thermal stability, indicated by a shift of the derived mass loss curves to lower temperatures, as confirmed by an increased water content and decreased crystallinity of the test specimen during aging. The study also highlights that if crystallinity and moisture content increase moderately, the thermal degradation curves remain unchanged. Additionally, kinetic analyses using mentioned models indicate a multi-step degradation process of PLA. The activation energy fluctuates with the conversion rate, suggesting complex underlying kinetics. These findings emphasize the need for dynamic adjustment of predictive models for material lifespan. The three PLA types were characterized by Differential Scanning Calorimetry (DSC), moisture absorption measurement and Gel permeation chromatography (GPC).</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":" ","pages":"e23642"},"PeriodicalIF":3.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11661432/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142783921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chitosan/Fibroin Biopolymer-Based Hydrogels for Potential Angiogenesis in Developing Chicks and Accelerated Wound Healing in Mice. 壳聚糖/纤维素生物聚合物水凝胶用于发育中雏鸡的潜在血管生成和加速小鼠的伤口愈合
IF 3.2 4区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-01 Epub Date: 2024-10-09 DOI: 10.1002/bip.23633
Hafiza Zubia Dawood, Chaman Ara, Asmatullah, Sehrish Jabeen, Atif Islam, Zunaira Huma Ghauri

Potential therapies for wound management remain one of the most challenging affairs to date. Biopolymer hydrogels possess inherent properties that facilitate the healing of damaged tissue by creating a supportive and hydrated environment. Chitosan/fibroin hydrogels were formulated with poly (vinyl pyrrolidone) and cross-linked using 3-aminopropyl (diethoxy) methylsilane (APDEMS) for the aforementioned function. The hydrogels were characterized through Fourier transform infrared spectroscopy, thermogravimetric analysis, and scanning electron microscopy, and their swelling response was observed using a variety of solvents. Additionally, hydrogels were investigated for biomedical applications. As the amount of fibroin added to the hydrogels increased, the swelling ratio decreased. The analysis of chorioallantoic membrane (CAM) assay revealed that higher concentrations of fibroin in the hydrogel were directly correlated with increased angiogenesis. The intragroup comparison showed that the vascular number in the CPF5 group was significantly increased (p ≤ 0.05) compared to other hydrogel groups. The wound healing efficiency of the prepared hydrogels showed that the rate of wound reduction (99.06%) was remarkably (p ≤ 0.05) high in the hydrogel group with a greater fibroin content against control (67.03%). Histological findings of wounded tissues corroborate the abovementioned results, showing dense fibrous connective tissues in the fibroin group compared to the control. The results of this work provide thorough preclinical evidence that chitosan-fibroin biopolymers are involved in enhanced angiogenesis in growing chicks and speed up wound healing in mice without any obvious toxicity.

迄今为止,伤口管理的潜在疗法仍是最具挑战性的事务之一。生物聚合物水凝胶具有与生俱来的特性,可通过创造一个支持性的水合环境来促进受损组织的愈合。为了实现上述功能,我们用聚(乙烯基吡咯烷酮)配制壳聚糖/纤维素水凝胶,并用 3-氨基丙基(二乙氧基)甲基硅烷(APDEMS)进行交联。通过傅立叶变换红外光谱、热重分析和扫描电子显微镜对水凝胶进行了表征,并使用多种溶剂观察了它们的溶胀反应。此外,还研究了水凝胶的生物医学应用。随着水凝胶中纤维素添加量的增加,溶胀率也随之降低。绒毛膜(CAM)检测分析表明,水凝胶中纤维素浓度越高,血管生成越多。组内比较显示,与其他水凝胶组相比,CPF5 组的血管数量明显增加(p ≤ 0.05)。制备的水凝胶的伤口愈合效率显示,与对照组(67.03%)相比,纤维蛋白含量更高的水凝胶组的伤口缩小率(99.06%)明显更高(p ≤ 0.05)。损伤组织的组织学结果证实了上述结果,与对照组相比,纤维蛋白组显示出致密的纤维结缔组织。这项工作的结果提供了详尽的临床前证据,证明壳聚糖-纤维素生物聚合物可促进生长期雏鸡的血管生成,加快小鼠的伤口愈合,且无明显毒性。
{"title":"Chitosan/Fibroin Biopolymer-Based Hydrogels for Potential Angiogenesis in Developing Chicks and Accelerated Wound Healing in Mice.","authors":"Hafiza Zubia Dawood, Chaman Ara, Asmatullah, Sehrish Jabeen, Atif Islam, Zunaira Huma Ghauri","doi":"10.1002/bip.23633","DOIUrl":"10.1002/bip.23633","url":null,"abstract":"<p><p>Potential therapies for wound management remain one of the most challenging affairs to date. Biopolymer hydrogels possess inherent properties that facilitate the healing of damaged tissue by creating a supportive and hydrated environment. Chitosan/fibroin hydrogels were formulated with poly (vinyl pyrrolidone) and cross-linked using 3-aminopropyl (diethoxy) methylsilane (APDEMS) for the aforementioned function. The hydrogels were characterized through Fourier transform infrared spectroscopy, thermogravimetric analysis, and scanning electron microscopy, and their swelling response was observed using a variety of solvents. Additionally, hydrogels were investigated for biomedical applications. As the amount of fibroin added to the hydrogels increased, the swelling ratio decreased. The analysis of chorioallantoic membrane (CAM) assay revealed that higher concentrations of fibroin in the hydrogel were directly correlated with increased angiogenesis. The intragroup comparison showed that the vascular number in the CPF5 group was significantly increased (p ≤ 0.05) compared to other hydrogel groups. The wound healing efficiency of the prepared hydrogels showed that the rate of wound reduction (99.06%) was remarkably (p ≤ 0.05) high in the hydrogel group with a greater fibroin content against control (67.03%). Histological findings of wounded tissues corroborate the abovementioned results, showing dense fibrous connective tissues in the fibroin group compared to the control. The results of this work provide thorough preclinical evidence that chitosan-fibroin biopolymers are involved in enhanced angiogenesis in growing chicks and speed up wound healing in mice without any obvious toxicity.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":" ","pages":"e23633"},"PeriodicalIF":3.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142387623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimizing the Production of Bacterial Cellulose Nanofibers and Nanocrystals Through Strategic Fiber Pretreatment. 通过战略性纤维预处理优化细菌纤维素纳米纤维和纳米晶体的生产。
IF 3.2 4区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-01 Epub Date: 2024-10-03 DOI: 10.1002/bip.23634
Fulya Şahin, Neslihan Kayra, Ali Özhan Aytekin

Bacterial cellulose (BC) has unique properties such as high tensile strength, high crystallinity, and high purity. The fiber length of BC causes different attributes. Therefore, the degradation of BC has been studied extensively. In this study, the fibers of BC were rearranged via a DMAc-LiCl solvent and BC was degraded in the wet state. Two different degradation methods were applied: milling with liquid nitrogen and autoclave treatment. The degraded BCs were characterized by FTIR, TEM, AFM, TGA, and XRD. The solvent helps to align the fibers, making them more crystalline. The degraded BCs had a lower crystalline ratio than untreated BC, due to increased hydrogen bonding during degradation in the wet state. Degradation with an autoclave produced two different degraded BCs: nanofibrils and spherical nanocrystals, with and without solvent pretreatment, respectively. The nanofibril lengths were between 312 and 700 nm depending on the applied method, and the spherical nanocrystal size was 56 nm. The rearrangement via solvent causes an important difference in the degradation of BC. Nanofibrils and nanocrystals can be obtained, depending on the rearrangement of fibers before the degradation process.

细菌纤维素(BC)具有高抗张强度、高结晶度和高纯度等独特性能。细菌纤维素的纤维长度会导致不同的属性。因此,人们对 BC 的降解进行了广泛的研究。在本研究中,通过 DMAc-LiCl 溶剂对 BC 纤维进行重新排列,并在湿态下降解 BC。采用了两种不同的降解方法:液氮研磨和高压釜处理。傅立叶变换红外光谱(FTIR)、电子显微镜(TEM)、原子力显微镜(AFM)、热重分析(TGA)和 X 射线衍射(XRD)对降解的 BC 进行了表征。溶剂有助于纤维排列整齐,使其更具结晶性。与未处理的碱性纤维相比,降解的碱性纤维的结晶率较低,这是由于在湿态降解过程中氢键作用增加所致。用高压锅降解产生了两种不同的降解 BC:纳米纤维和球形纳米晶体,分别经过和未经溶剂预处理。根据所用方法的不同,纳米纤维长度在 312 纳米到 700 纳米之间,球形纳米晶体大小为 56 纳米。通过溶剂的重新排列对 BC 的降解产生了重要影响。根据降解过程前纤维的重排情况,可以获得纳米纤维和纳米晶体。
{"title":"Optimizing the Production of Bacterial Cellulose Nanofibers and Nanocrystals Through Strategic Fiber Pretreatment.","authors":"Fulya Şahin, Neslihan Kayra, Ali Özhan Aytekin","doi":"10.1002/bip.23634","DOIUrl":"10.1002/bip.23634","url":null,"abstract":"<p><p>Bacterial cellulose (BC) has unique properties such as high tensile strength, high crystallinity, and high purity. The fiber length of BC causes different attributes. Therefore, the degradation of BC has been studied extensively. In this study, the fibers of BC were rearranged via a DMAc-LiCl solvent and BC was degraded in the wet state. Two different degradation methods were applied: milling with liquid nitrogen and autoclave treatment. The degraded BCs were characterized by FTIR, TEM, AFM, TGA, and XRD. The solvent helps to align the fibers, making them more crystalline. The degraded BCs had a lower crystalline ratio than untreated BC, due to increased hydrogen bonding during degradation in the wet state. Degradation with an autoclave produced two different degraded BCs: nanofibrils and spherical nanocrystals, with and without solvent pretreatment, respectively. The nanofibril lengths were between 312 and 700 nm depending on the applied method, and the spherical nanocrystal size was 56 nm. The rearrangement via solvent causes an important difference in the degradation of BC. Nanofibrils and nanocrystals can be obtained, depending on the rearrangement of fibers before the degradation process.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":" ","pages":"e23634"},"PeriodicalIF":3.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11661429/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142364236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polyhydroxybutyrate Synthesis by the Halophilic Bacterium, Halomonas boliviensis, in Oil Palm Empty Fruit Bunch Hydrolysate. 油棕空果束水解产物中嗜盐菌玻利维盐单胞菌合成多羟基丁酸盐。
IF 3.2 4区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-01 Epub Date: 2024-12-06 DOI: 10.1002/bip.23644
Diana Catalina Arcila-Echavarría, Thelmo Alejandro Lu-Chau, Natalia Andrea Gómez-Vanegas

Polyhydroxyalkanoates are biodegradable, natural polyesters with the potential to replace petroleum-based plastics. However, high production costs limit their competitiveness. This study assessed the ability of Halomonas boliviensis, a halophilic bacterium, to synthesize polyhydroxybutyrate (PHB) from an agricultural residue, oil palm empty fruit bunch (OPEFB), in highly saline solutions that minimize contamination risk. OPEFB, containing glucose, xylose, and arabinose, offers a cost-effective alternative to pure sugar substrates and aids in waste management. PHB production from OPEFB was compared with fermentations using these sugars. H. boliviensis successfully synthesized PHB from all substrates, achieving the highest PHB content from glucose (54.63%), followed by xylose (40.18%), OPEFB (33.59%), and arabinose (33.52%). Glucose in the OPEFB hydrolysate was entirely depleted after 72 h, while xylose showed minimal consumption. This research highlights the potential of using low-cost carbon sources like OPEFB for PHB production. Future research should focus on optimizing the fermentation process to increase PHB yields, making it a more viable alternative to traditional plastics.

聚羟基烷酸酯是可生物降解的天然聚酯,具有取代石油基塑料的潜力。然而,高昂的生产成本限制了它们的竞争力。本研究评估了嗜盐细菌嗜盐单胞菌(Halomonas boliviensis)在高盐溶液中从农业残留物油棕空果束(OPEFB)合成聚羟基丁酸盐(PHB)的能力,从而将污染风险降至最低。OPEFB含有葡萄糖、木糖和阿拉伯糖,为纯糖底物提供了一种具有成本效益的替代品,并有助于废物管理。比较了OPEFB与使用这些糖发酵产生的PHB。H. boliviensis成功地从所有底物合成了PHB,其中葡萄糖的PHB含量最高(54.63%),其次是木糖(40.18%)、OPEFB(33.59%)和阿拉伯糖(33.52%)。OPEFB水解产物中的葡萄糖在72 h后完全耗尽,而木糖的消耗最小。这项研究强调了使用OPEFB等低成本碳源生产PHB的潜力。未来的研究应侧重于优化发酵过程,以提高PHB的产量,使其成为传统塑料的更可行的替代品。
{"title":"Polyhydroxybutyrate Synthesis by the Halophilic Bacterium, Halomonas boliviensis, in Oil Palm Empty Fruit Bunch Hydrolysate.","authors":"Diana Catalina Arcila-Echavarría, Thelmo Alejandro Lu-Chau, Natalia Andrea Gómez-Vanegas","doi":"10.1002/bip.23644","DOIUrl":"10.1002/bip.23644","url":null,"abstract":"<p><p>Polyhydroxyalkanoates are biodegradable, natural polyesters with the potential to replace petroleum-based plastics. However, high production costs limit their competitiveness. This study assessed the ability of Halomonas boliviensis, a halophilic bacterium, to synthesize polyhydroxybutyrate (PHB) from an agricultural residue, oil palm empty fruit bunch (OPEFB), in highly saline solutions that minimize contamination risk. OPEFB, containing glucose, xylose, and arabinose, offers a cost-effective alternative to pure sugar substrates and aids in waste management. PHB production from OPEFB was compared with fermentations using these sugars. H. boliviensis successfully synthesized PHB from all substrates, achieving the highest PHB content from glucose (54.63%), followed by xylose (40.18%), OPEFB (33.59%), and arabinose (33.52%). Glucose in the OPEFB hydrolysate was entirely depleted after 72 h, while xylose showed minimal consumption. This research highlights the potential of using low-cost carbon sources like OPEFB for PHB production. Future research should focus on optimizing the fermentation process to increase PHB yields, making it a more viable alternative to traditional plastics.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":" ","pages":"e23644"},"PeriodicalIF":3.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142791089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication and Characterization of Agar- and Seaweed-Derived Biomembrane Films for Biomedical and Other Applications. 用于生物医学和其他应用的琼脂和海藻衍生生物膜薄膜的制备和表征。
IF 3.2 4区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-01 Epub Date: 2024-12-10 DOI: 10.1002/bip.23643
Muthiyal Prabakaran Sudhakar, Sureshkumar Ambika Nived, Gopal Dharani

This study focused on seaweed-based biomembrane development. The physical, mechanical, thermal, and biological properties of the fabricated films with different combinations of materials, such as agar, chitosan, poly(vinyl) alcohol (PVA), and quercetin, were characterized. The surface morphology of the films was analyzed using SEM. The maximum tensile strength (53.11 N/mm2), elongation at break (3.42%), and Young's modulus (15.52) of the biomembrane were recorded for the agar + chitosan combination. FT-Raman analysis confirmed the functional groups shift between the biopolymer and plasticizer used in this study. TG-DSC analysis of the biomembranes revealed a Tg in the range of 92.80°C-115°C. The maximum antioxidant activity was reported for quercetin (58.62%), and the maximum antimicrobial activity was observed for the chitosan and quercetin compounds against E. coli. A minimum hemolysis of 0.95% was achieved for the combination of agar + quercetin (AQ), agar + PEG (APE), Gracilaria corticata extract + PVA + quercetin (GCPQ) and agar + chitosan (AC) biomembranes. The minimum cytotoxicity of the biomembrane was 62.51% and 63.87% for Gracilaria corticata extract + PVA + quercetin (GCPQ), and agar + PVA, respectively. The proposed biomembrane films were found to be suitable for biomedical and packaging applications.

本研究的重点是海藻基生物膜的开发。考察了琼脂、壳聚糖、聚乙烯醇、槲皮素等不同材料组合制备的薄膜的物理、机械、热、生物性能。利用扫描电镜对膜的表面形貌进行了分析。琼脂+壳聚糖复合生物膜的最大拉伸强度为53.11 N/mm2,断裂伸长率为3.42%,杨氏模量为15.52。FT-Raman分析证实了本研究中使用的生物聚合物和增塑剂之间的官能团转移。生物膜的Tg - dsc分析显示Tg在92.80°C-115°C之间。槲皮素的抗氧化活性最高(58.62%),壳聚糖和槲皮素对大肠杆菌的抑菌活性最高。琼脂+槲皮素(AQ)、琼脂+ PEG (APE)、桂花提取物+ PVA +槲皮素(GCPQ)和琼脂+壳聚糖(AC)生物膜的溶血率最低为0.95%。皮葛提取物+ PVA +槲皮素(GCPQ)和琼脂+ PVA生物膜的最小细胞毒性分别为62.51%和63.87%。所提出的生物膜薄膜被发现适用于生物医学和包装应用。
{"title":"Fabrication and Characterization of Agar- and Seaweed-Derived Biomembrane Films for Biomedical and Other Applications.","authors":"Muthiyal Prabakaran Sudhakar, Sureshkumar Ambika Nived, Gopal Dharani","doi":"10.1002/bip.23643","DOIUrl":"10.1002/bip.23643","url":null,"abstract":"<p><p>This study focused on seaweed-based biomembrane development. The physical, mechanical, thermal, and biological properties of the fabricated films with different combinations of materials, such as agar, chitosan, poly(vinyl) alcohol (PVA), and quercetin, were characterized. The surface morphology of the films was analyzed using SEM. The maximum tensile strength (53.11 N/mm<sup>2</sup>), elongation at break (3.42%), and Young's modulus (15.52) of the biomembrane were recorded for the agar + chitosan combination. FT-Raman analysis confirmed the functional groups shift between the biopolymer and plasticizer used in this study. TG-DSC analysis of the biomembranes revealed a T<sub>g</sub> in the range of 92.80°C-115°C. The maximum antioxidant activity was reported for quercetin (58.62%), and the maximum antimicrobial activity was observed for the chitosan and quercetin compounds against E. coli. A minimum hemolysis of 0.95% was achieved for the combination of agar + quercetin (AQ), agar + PEG (APE), Gracilaria corticata extract + PVA + quercetin (GCPQ) and agar + chitosan (AC) biomembranes. The minimum cytotoxicity of the biomembrane was 62.51% and 63.87% for Gracilaria corticata extract + PVA + quercetin (GCPQ), and agar + PVA, respectively. The proposed biomembrane films were found to be suitable for biomedical and packaging applications.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":" ","pages":"e23643"},"PeriodicalIF":3.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142799477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication of Bio-Based Composite Materials for Antimicrobial Cotton Fabric With Microbial Anti-Adhesive Activity. 制造具有微生物抗粘活性的抗菌棉织物生物基复合材料。
IF 3.2 4区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-01 Epub Date: 2024-10-22 DOI: 10.1002/bip.23635
Md Ibrahim H Mondal, Firoz Ahmed, Md Hasinur Rahman

The development of multifunctional cotton fabrics that are stain-resistant, antimicrobial, and easy to clean has sparked scientific interest as well as practical usefulness, owing to its medical and healthcare applications. The purpose of this study was to fabricate self-cleaning and antimicrobial cotton for final use by soaking the cotton fabric in nonfluorinated hybrid formulations based on quaternary chitosan-silane using the sol-gel process. The fluorine-free cotton fabric demonstrated high self-cleaning behavior and outstanding bacterial killing efficacy against E. coli and S. aureus bacteria, without altering the desired textile properties of cotton fabric. Remarkably, cotton textiles using the hybrid formulations HTACC-VTES (N-(2-hydroxy)propyl-3-trimethylammonium chitosan chloride-vinyltriethoxy silane) and TMCC-VTES (N, N, N-trimethyl chitosan chloride-vinyltriethoxy silane) demonstrated promising water contact angles of 147° and 142° respectively, indicating a move toward superhydrophobicity. In FTIR spectra, both treated cotton textiles had an absorption peak at 1208 cm-1 (SiOC bending), indicating a stronger interaction between silane binding agents and the cotton substrate. The treated cotton fabric with desirable features retains its stability and endurance after 12 cycles of washing for antibacterial tests and 15 cycles for wettability tests. The manufactured cotton fabric has several potential applications, such as in personal hygiene items and medical applications.

多功能棉织物具有抗污、抗菌和易清洁的特性,由于其在医疗和保健方面的应用,这种织物的开发引发了科学界的兴趣,同时也具有实用性。本研究的目的是利用溶胶-凝胶工艺,将棉织物浸泡在基于季甲壳素-硅烷的无氟混合配方中,从而制造出最终使用的自清洁抗菌棉织物。这种无氟棉织物具有很高的自洁性能,对大肠杆菌和金黄色葡萄球菌具有出色的杀菌效果,同时不会改变棉织物所需的纺织特性。值得注意的是,使用 HTACC-VTES(N-(2-羟基)丙基-3-三甲基氯化壳聚糖-乙烯基三乙氧基硅烷)和 TMCC-VTES(N,N,N-三甲基氯化壳聚糖-乙烯基三乙氧基硅烷)混合配方的棉织物显示出良好的水接触角,分别达到 147°和 142°,表明它们正向超疏水方向发展。在傅立叶变换红外光谱中,两种处理过的棉织物在 1208 cm-1 处都有一个吸收峰(SiOC 弯曲),表明硅烷结合剂与棉基质之间的相互作用更强。经过处理的棉织物具有理想的特性,在抗菌测试中经过 12 次洗涤,在润湿测试中经过 15 次洗涤后,仍能保持其稳定性和耐久性。制成的棉织物具有多种潜在用途,如个人卫生用品和医疗应用。
{"title":"Fabrication of Bio-Based Composite Materials for Antimicrobial Cotton Fabric With Microbial Anti-Adhesive Activity.","authors":"Md Ibrahim H Mondal, Firoz Ahmed, Md Hasinur Rahman","doi":"10.1002/bip.23635","DOIUrl":"10.1002/bip.23635","url":null,"abstract":"<p><p>The development of multifunctional cotton fabrics that are stain-resistant, antimicrobial, and easy to clean has sparked scientific interest as well as practical usefulness, owing to its medical and healthcare applications. The purpose of this study was to fabricate self-cleaning and antimicrobial cotton for final use by soaking the cotton fabric in nonfluorinated hybrid formulations based on quaternary chitosan-silane using the sol-gel process. The fluorine-free cotton fabric demonstrated high self-cleaning behavior and outstanding bacterial killing efficacy against E. coli and S. aureus bacteria, without altering the desired textile properties of cotton fabric. Remarkably, cotton textiles using the hybrid formulations HTACC-VTES (N-(2-hydroxy)propyl-3-trimethylammonium chitosan chloride-vinyltriethoxy silane) and TMCC-VTES (N, N, N-trimethyl chitosan chloride-vinyltriethoxy silane) demonstrated promising water contact angles of 147° and 142° respectively, indicating a move toward superhydrophobicity. In FTIR spectra, both treated cotton textiles had an absorption peak at 1208 cm<sup>-1</sup> (SiOC bending), indicating a stronger interaction between silane binding agents and the cotton substrate. The treated cotton fabric with desirable features retains its stability and endurance after 12 cycles of washing for antibacterial tests and 15 cycles for wettability tests. The manufactured cotton fabric has several potential applications, such as in personal hygiene items and medical applications.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":" ","pages":"e23635"},"PeriodicalIF":3.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142457107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Biopolymers
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1