Extreme-value analysis in nano-biological systems: applications and implications.

IF 4.9 Q1 BIOPHYSICS Biophysical reviews Pub Date : 2024-10-02 eCollection Date: 2024-10-01 DOI:10.1007/s12551-024-01239-w
Kumiko Hayashi, Nobumichi Takamatsu, Shunki Takaramoto
{"title":"Extreme-value analysis in nano-biological systems: applications and implications.","authors":"Kumiko Hayashi, Nobumichi Takamatsu, Shunki Takaramoto","doi":"10.1007/s12551-024-01239-w","DOIUrl":null,"url":null,"abstract":"<p><p>Extreme value analysis (EVA) is a statistical method that studies the properties of extreme values of datasets, crucial for fields like engineering, meteorology, finance, insurance, and environmental science. EVA models extreme events using distributions such as Fréchet, Weibull, or Gumbel, aiding in risk prediction and management. This review explores EVA's application to nanoscale biological systems. Traditionally, biological research focuses on average values from repeated experiments. However, EVA offers insights into molecular mechanisms by examining extreme data points. We introduce EVA's concepts with simulations and review its use in studying motor protein movements within cells, highlighting the importance of in vivo analysis due to the complex intracellular environment. We suggest EVA as a tool for extracting motor proteins' physical properties in vivo and discuss its potential in other biological systems. While there have been only a few applications of EVA to biological systems, it holds promise for uncovering hidden properties in extreme data, promoting its broader application in life sciences.</p>","PeriodicalId":9094,"journal":{"name":"Biophysical reviews","volume":"16 5","pages":"571-579"},"PeriodicalIF":4.9000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11604884/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12551-024-01239-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Extreme value analysis (EVA) is a statistical method that studies the properties of extreme values of datasets, crucial for fields like engineering, meteorology, finance, insurance, and environmental science. EVA models extreme events using distributions such as Fréchet, Weibull, or Gumbel, aiding in risk prediction and management. This review explores EVA's application to nanoscale biological systems. Traditionally, biological research focuses on average values from repeated experiments. However, EVA offers insights into molecular mechanisms by examining extreme data points. We introduce EVA's concepts with simulations and review its use in studying motor protein movements within cells, highlighting the importance of in vivo analysis due to the complex intracellular environment. We suggest EVA as a tool for extracting motor proteins' physical properties in vivo and discuss its potential in other biological systems. While there have been only a few applications of EVA to biological systems, it holds promise for uncovering hidden properties in extreme data, promoting its broader application in life sciences.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳米生物系统中的极值分析:应用和意义。
极值分析(EVA)是一种研究数据集极值特性的统计方法,在工程、气象、金融、保险和环境科学等领域至关重要。EVA使用fracimchet、Weibull或Gumbel等分布对极端事件建模,帮助进行风险预测和管理。本文综述了EVA在纳米尺度生物系统中的应用。传统上,生物学研究侧重于重复实验的平均值。然而,EVA通过检查极端数据点提供了对分子机制的见解。我们通过模拟介绍EVA的概念,并回顾其在研究细胞内运动蛋白运动中的应用,强调由于细胞内环境复杂,体内分析的重要性。我们建议EVA作为提取体内运动蛋白物理特性的工具,并讨论其在其他生物系统中的潜力。虽然EVA在生物系统中的应用很少,但它有望揭示极端数据中的隐藏属性,促进其在生命科学中的广泛应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biophysical reviews
Biophysical reviews Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
8.90
自引率
0.00%
发文量
93
期刊介绍: Biophysical Reviews aims to publish critical and timely reviews from key figures in the field of biophysics. The bulk of the reviews that are currently published are from invited authors, but the journal is also open for non-solicited reviews. Interested authors are encouraged to discuss the possibility of contributing a review with the Editor-in-Chief prior to submission. Through publishing reviews on biophysics, the editors of the journal hope to illustrate the great power and potential of physical techniques in the biological sciences, they aim to stimulate the discussion and promote further research and would like to educate and enthuse basic researcher scientists and students of biophysics. Biophysical Reviews covers the entire field of biophysics, generally defined as the science of describing and defining biological phenomenon using the concepts and the techniques of physics. This includes but is not limited by such areas as: - Bioinformatics - Biophysical methods and instrumentation - Medical biophysics - Biosystems - Cell biophysics and organization - Macromolecules: dynamics, structures and interactions - Single molecule biophysics - Membrane biophysics, channels and transportation
期刊最新文献
Biophysical Reviews: the IUPAB journal promoting biophysics on an international stage. Probing living cell dynamics and molecular interactions using atomic force microscopy. Biophysical assays to test cellular mechanosensing: moving towards high throughput. Hydrogel models of pancreatic adenocarcinoma to study cell mechanosensing. Editorial to the topical issue: the 7th Nanoengineering for Mechanobiology Symposium 2024 Camogli, Genoa, Italy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1