Nonthermal fluctuations accelerate biomolecular motors.

IF 4.9 Q1 BIOPHYSICS Biophysical reviews Pub Date : 2024-10-02 eCollection Date: 2024-10-01 DOI:10.1007/s12551-024-01238-x
Takayuki Ariga
{"title":"Nonthermal fluctuations accelerate biomolecular motors.","authors":"Takayuki Ariga","doi":"10.1007/s12551-024-01238-x","DOIUrl":null,"url":null,"abstract":"<p><p>Intracellular transport is essential for maintaining cellular function. This process is driven by different mechanisms in prokaryotic and eukaryotic cells. In small prokaryotic cells, diffusion is the primary means of transport, while larger eukaryotic cells also rely on active transport by molecular motors such as kinesin and dynein. Recently, it has become evident that, in addition to diffusion based on thermal fluctuations (Brownian motion), which was conventionally considered a diffusion mechanism within living cells, nonthermal fluctuations generated by metabolic activities play a crucial role in intracellular diffusion. Similarly, while molecular motors have been proposed to exploit thermal fluctuations in the environment following the direct observation and manipulation of single molecules, they have also been reported to utilize nonthermal fluctuations in recent years. This review begins with a brief overview of the historical knowledge of diffusive intracellular transport, which has been extended from the thermal fluctuations to the nonthermal fluctuations generated by metabolic activity. It then introduces recent findings on how nonthermal fluctuations accelerate the motion of molecular motors and discusses future perspectives on the general effects of these fluctuations on molecules in living cells.</p>","PeriodicalId":9094,"journal":{"name":"Biophysical reviews","volume":"16 5","pages":"605-612"},"PeriodicalIF":4.9000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11604964/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12551-024-01238-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Intracellular transport is essential for maintaining cellular function. This process is driven by different mechanisms in prokaryotic and eukaryotic cells. In small prokaryotic cells, diffusion is the primary means of transport, while larger eukaryotic cells also rely on active transport by molecular motors such as kinesin and dynein. Recently, it has become evident that, in addition to diffusion based on thermal fluctuations (Brownian motion), which was conventionally considered a diffusion mechanism within living cells, nonthermal fluctuations generated by metabolic activities play a crucial role in intracellular diffusion. Similarly, while molecular motors have been proposed to exploit thermal fluctuations in the environment following the direct observation and manipulation of single molecules, they have also been reported to utilize nonthermal fluctuations in recent years. This review begins with a brief overview of the historical knowledge of diffusive intracellular transport, which has been extended from the thermal fluctuations to the nonthermal fluctuations generated by metabolic activity. It then introduces recent findings on how nonthermal fluctuations accelerate the motion of molecular motors and discusses future perspectives on the general effects of these fluctuations on molecules in living cells.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非热波动加速生物分子马达。
细胞内运输对维持细胞功能至关重要。这一过程在原核细胞和真核细胞中由不同的机制驱动。在小的原核细胞中,扩散是主要的运输方式,而较大的真核细胞也依赖于分子马达的主动运输,如运动蛋白和动力蛋白。最近,人们发现,除了基于热波动(布朗运动)的扩散(通常被认为是活细胞内的扩散机制)之外,代谢活动产生的非热波动在细胞内扩散中也起着至关重要的作用。类似地,虽然分子马达已被提出利用单分子直接观察和操纵后环境中的热波动,但近年来也有报道称它们利用了非热波动。本文首先对细胞内弥漫性运输的历史知识进行了简要概述,并将其从热波动扩展到代谢活动产生的非热波动。然后介绍了关于非热波动如何加速分子马达运动的最新发现,并讨论了这些波动对活细胞中分子的一般影响的未来观点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biophysical reviews
Biophysical reviews Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
8.90
自引率
0.00%
发文量
93
期刊介绍: Biophysical Reviews aims to publish critical and timely reviews from key figures in the field of biophysics. The bulk of the reviews that are currently published are from invited authors, but the journal is also open for non-solicited reviews. Interested authors are encouraged to discuss the possibility of contributing a review with the Editor-in-Chief prior to submission. Through publishing reviews on biophysics, the editors of the journal hope to illustrate the great power and potential of physical techniques in the biological sciences, they aim to stimulate the discussion and promote further research and would like to educate and enthuse basic researcher scientists and students of biophysics. Biophysical Reviews covers the entire field of biophysics, generally defined as the science of describing and defining biological phenomenon using the concepts and the techniques of physics. This includes but is not limited by such areas as: - Bioinformatics - Biophysical methods and instrumentation - Medical biophysics - Biosystems - Cell biophysics and organization - Macromolecules: dynamics, structures and interactions - Single molecule biophysics - Membrane biophysics, channels and transportation
期刊最新文献
Biophysical Reviews: the IUPAB journal promoting biophysics on an international stage. Probing living cell dynamics and molecular interactions using atomic force microscopy. Biophysical assays to test cellular mechanosensing: moving towards high throughput. Hydrogel models of pancreatic adenocarcinoma to study cell mechanosensing. Editorial to the topical issue: the 7th Nanoengineering for Mechanobiology Symposium 2024 Camogli, Genoa, Italy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1